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In this abstract we show that the Multiple Kernel Learning (MKL) problem of learning a “good” combi-
nation of pre-specified base kernels can be reduced to binary classification in a new instance space. Framing
MKL in this way has the distinct advantage that it makes it easy to leverage the extensive binary classifi-
cation research to develop better performing and more scalable MKL techniques. Arguably, this approach
also has to benefit of being conceptually simpler, easier to implement, and more accessible to practitioners
than most current MKL systems.

Consider a classification problem where instances (x, y) are drawn from a distribution P over X × Y,
with Y a finite discrete set of labels. We assume that we have access to a finite set of p positive semi-definite
(PSD) base kernel functions K1, · · · ,Kp with Ki : X × X → R. Our goal is to learn a combination of these
kernel functions that is itself a positive semi-definite function and is a “good” kernel for the classification
task at hand. To achieve this, we define another binary classification problem over a new instance space
{(zxx′ , tyy′)|((x, y), (x′, y′)) ∼ P × P} ⊂ R

p × {±1} where

zxx′ = (K1(x, x
′), · · · ,Kp(x, x

′)) tyy′ = 2 · 1{y = y′} − 1 (1)

We call this new instance space the K-space. Any function h : Rp → R in this space induces a similarity
function K̃h between instances in the original space:

K̃h(x, x
′) = h(zxx′) = h(K1(x, x

′), · · · ,Kp(x, x
′))

If K̃h is also positive semi-definite, hence a valid kernel, we say that h is a K-classifier. For example, all
linear functions with positive coefficients (i.e. hµ(zxx′) = µ · zxx′ with µ ≥ 0) are K-classifiers with the

induced kernels K̃µ being linear combinations of the p base kernels.

The key insight is that a good K-classifier h will induce a good kernel K̃h, which in turn will allow for
good performance on the original classification task. Intuitively, if a K-classifier h is a good classifier in the
K-space, then K̃h(x, x

′) = h(zx,x′) will likely be positive if x and x′ belong to the same class and negative

otherwise. This makes K̃h a good kernel for the original classification task. This intuition is backed up by
the following result:

Theorem 1 Let h be a K-classifier, K̃h be the kernel induced by h, and R be a constant such that K̃h(x, x) ≤
R2 ∀x ∈ X . Let zxx′ and tyy′ be as defined in equation 1. Then, with probability at least 1 − δ, a classifier

f̂(·) =
∑n

i=1 α̂iK̃h(xi, ·) with generalization error

P(x,y)

r
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z
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can be learned efficiently from a training sample of n IID instances.

To the best of our knowledge, this result represent the first finite sample bound for two-stage kernel
learning, improving on previous bounds that were only asymptotic.

Thus the problem of learning a good kernel is reduced to the problem of learning a good K-classifier in
the newly defined K-space: given a training sample (xi, yi)

n
i=1 for the original classification task, construct

a K-training set (zij , tij)1≤i≤j≤n and learn a K-classifier h from this sample. Any learning algorithm can be
used for learning h provided that the induced kernel can be guaranteed to be a valid PSD kernel.
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Figure 1: Left: Correlation between hinge loss (and accuracy) on K-examples and test data accuracy on
Caltech 101 dataset. Middle: Caltech-101 results: mean accuracy over all classes for different sample sizes,
averaged over 5 splits.Right: Caltech-256 results: mean accuracy over all classes for different sample sizes.
Results for LP-β and MKL are taken from (Gehler & Nowozin, 2009).

To scale up and/or parallelize the algorithm one can readily take advantage of the recent advances in
large scale learning. Our implementation, for instance, learns a K-classifier by training an L2 regularized
linear SVM with positive weights using the stochastic projected sub-gradient descent method from Pegasos
(Shalev-Shwartz et al., 2007). This makes our approach very scalable with respect to the number of training
points, the number of base kernels, as well as the number of classes in the original problem.

We run a comprehensive evaluation on two object recognition datasets (Caltech 101 and 256), and
three bioinformatics datasets (Psort+, Psort-, Plant). We compare our method (TS-MKL) with a number of
baselines: best base kernel, linear uniform combination of base kernels (Average), one-stage MKL algorithms
like SILP (Sonnenburg et al., 2006) and SimpleMKL (Rakotomamonjy et al., 2007), and two-stage MKL
algorithms based on Target Alignment (Cortes et al., 2010). On the Caltech problems (Figure 1) TS-MKL
significantly outperforms the other MKL algorithms, and achieves performance comparable to the state of the
art method, LP-β (Gehler & Nowozin, 2009)1. On the bioinformatics datasets (Table 1) all MKL methods
perform equally well, and better than “best kernel” and “average kernel” baselines.

Psort+ Psort– Plant
Full test Filtered Full test Filtered Full test

Best Kernel 81.30(4.69) 86.26(4.96) 85.95(1.54) 91.53(1.04) 72.19(3.94)

Average 84.75(3.97) 89.48(4.97) 88.03(1.10) 93.95(1.14) 86.72(3.38)

Target Alignment 88.14(3.99) 92.82(3.99) 89.91(1.42) 95.22(1.33) 89.13(2.75)

MKL (SILP/Simple) 89.05(3.02) 93.89(3.37) 91.01(1.10) 96.01(1.51) 89.32(2.76)

MC-MKL(Zien & Ong, 2007) – 93.8 – 96.1 89.1

TS-MKL(Our approach) 89.08(3.32) 93.50(2.74) 90.15(1.33) 95.63(1.31) 88.86(3.26)

Table 1: Average accuracy measures (%) over 10 splits for Psort+, Psort- and Plant datasets. Numbers in
parentheses are the std. deviations.
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