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Large-Scale Spike-and-Slab Sparse Coding for Unsupervised

Feature Discovery
Ian J. Goodfellow, Aaron Courvile, Yoshua Bengio. Dept. IRO, U. Montreal

We consider the problem of using a factor model we call spike-and-slab sparse coding (S3C) to learn

features for a classification task. The S3C model resembles both the spike-and-slab RBM and sparse coding.

Since exact inference in this model is intractable, we derive a structured variational inference procedure and

employ a variational EM training algorithm. Prior work on approximate inference for this model has not

prioritized the ability to exploit parallel architectures and scale to enormous problem sizes. We present

an inference procedure appropriate for use with GPUs which allows us to dramatically increase both the

training set size and the amount of latent factors.

The S3C model The S3C model consists of latent binary spike variables h ∈ {0, 1}N , latent real-valued
slab variables s ∈ R

N , and real-valued D-dimensional visible vector v ∈ R
D generated according to this

process: ∀i ∈ {1, . . . , N}, d ∈ {1, . . . , D},

p(hi = 1) = σ(bi), p(si | hi) = N (si | hiµi, α
−1

ii ), p(vd | s, h) = N (vd | Wd:(h ◦ s), β−1

dd
) (1)

where σ is the logistic sigmoid function, b is a set of biases on the spike variables, µ and W govern the linear

dependence of s on h and v on s respectively, α and β are diagonal precision matrices of their respective

conditionals, and h ◦ s denotes the element-wise product of h and s.

To avoid overparameterizing the distribution, we constrain the columns of W to have unit norm, as in sparse

coding. We restrict α to be a diagonal matrix and β to be a diagonal matrix or a scalar. We refer to the

variables hi and si as jointly defining the ith hidden unit, so that there are are total of N rather than 2N
hidden units. The state of a hidden unit is best understood as hisi, that is, the spike variables gate the slab

variables.

Outside the context of unsupervised feature discovery for supervised, semi-supervised and self-taught learn-

ing, the basic form of the S3C model (i.e. a spike-and-slab latent factor model) has appeared a number of

times in different domains (Lücke and Sheikh, 2011; Garrigues and Olshausen, 2008; Mohamed et al., 2011;

Titsias and Lázaro-Gredilla, 2011). However, the existing inference schemes have at most been applied to

models with hundreds of bases and hundreds of thousands of examples. To this literature, we contribute

an inference scheme that scales to the kinds of object classifications tasks that we consider, which require

training thousands of bases on millions of examples.

Variational inference for S3C The goal of variational inference is to select a distribution Q over the latent

variables that minimizes the Kullback–Leibler divergence:

DKL(Q(h, s)‖P (h, s|v)) (2)

where Q(h, s) is drawn from a tractable family of distributions. We choose Q(h, s) = ΠiQ(hi, si), which

implies a solution of the form

Q(hi) = ĥi, Q(si | hi) = N (si | hiŝi, (αi + hiW
T

i
βWi)

−1) (3)

where ĥi and ŝi must be found by an iterative process. Previous methods obtained poor runtimes on parallel

architectures such as GPUs or suffered from instability. We propose a fast, stable method. First, we partially

minimize the KL divergence with respect to ŝ. The terms of the KL divergence that depend on ŝ make up a

quadratic function so this can be minimized via conjugate gradient descent. We implement conjugate gra-

dient descent efficiently by using the R-operator to perform Hessian-vector products rather than computing

the entire Hessian explicitly (Schraudolph, 2002). This step is guaranteed to improve the KL divergence on

each iteration.

We next update ĥ in parallel, shrinking the update by a damping coefficient. This approach is not guaranteed

to decrease the KL divergence on each iteration but it is a widely applied approach that works well in practice

(Koller and Friedman, 2009). We find empirically that we can obtain a faster algorithm that reaches equally

good solutions by replacing the conjugate gradient update to ŝ with a more heuristic approach. The resulting

algorithm is summarized in Algorithm 1.

CIFAR-10 Results We evaluated our features by using them in the object recognition pipeline of Coates and

Ng (2011). On CIFAR-10, S3C achieves a test set accuracy of 78.3 ± 0.9 % with 95% confidence. Coates

and Ng (2011) do not report test set accuracy for sparse coding with “natural encoding” (i.e., extracting
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Figure 1: (Left) The energy functional of a batch of 5000 image patches increases during the E-step. (Right) Semi-

supervised classification accuracy on CIFAR-10. In both cases the hyperparameters for the unsupervised stage were

optimized for performance on the full CIFAR-10 dataset, not re-optimized for each point on the learning curve.

Algorithm 1 Fixed-Point Inference

Initialize ĥ(0) = σ(b) and ŝ(0) = µ.

for k=0:K do

Compute the individually optimal value ŝ∗i for each i simultaneously:

ŝ
∗
i =

µiαii + vT βWi − Wiβ

[

∑

j 6=i Wjĥj ŝ
(k)
j

]

αii + WT
i

βWi

Clip reflections by assigning

ci = ρsign(ŝ
∗
i )|ŝ

(k)
i

|

for all i such that sign(ŝ∗i ) 6= sign(ŝ
(k)
i

) and |ŝ∗i | > ρ|ŝ
(k)
i

|, and assigning ci = ŝ∗i for all other i.

Damp the updates by assigning

ŝ
(k+1)
i

= ηc + (1 − η)ŝ
(k)

where η ∈ (0, 1].

Compute the individually optimal values for ĥ:

ĥ
∗
i = σ







v −
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Wjŝ
(k+1)
j
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1
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T

βWiŝ
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i

+ bi
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αii(ŝ

(k+1)
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− µi)
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−
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log(αii + W

T
i βWi) +

1

2
log(αii)

)

Damp the update to ĥ:

ĥ
(k+1)

= ηĥ
∗

+ (1 − η)ĥ
(k)

end for

features in a model whose parameters are all the same as in the model used for training) but sparse coding

with different parameters for feature extraction than training achieves an accuracy of 78.8 ± 0.9% (Coates

and Ng, 2011). Since we have not enhanced our performance by modifying parameters at feature extraction

time these results seem to indicate that S3C is roughly equivalent to sparse coding for this classification

task. S3C also outperforms ssRBMs, which achieve 76.7± 0.9% accuracy.

We also used CIFAR-10 to evaluate S3C’s semi-supervised learning performance by training the SVM on

small subsets of the CIFAR-10 training set, but using features that were learned on the entire CIFAR-10 train

set. The results, summarized in Figure 1 (right) show that S3C is most advantageous for medium amounts

of labeled data. S3C features thus include an aspect of flexible regularization– they improve generalization

for smaller training sets yet do not cause underfitting on larger ones.

Transfer Learning Challenge For the NIPS 2011 Workshop on Challenges in Learning Hierarchical Mod-

els (Le et al., 2011), the organizers proposed a transfer learning competition. This competition used a

dataset consisting of 32 × 32 color images, including 100,000 unlabeled examples, 50,000 labeled exam-

ples of 100 object classes not present in the test set, and 120 labeled examples of 10 object classes present in

the test set. The test set was not made public until after the competition. We disregarded the 50,000 labels

and treated this as a semi-supervised learning task. We applied the same approach as on CIFAR-10 and won

the competition, with a test set accuracy of 48.6 %.
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