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Nearest neighbor classification is a well-known algorithm with theoretical bounds on the classification error
in the asymptotic limit (Cover and Hart, 1967). For k-NN classification, as the number k of nearest neighbors
approaches infinity, a simple majority voting rule can achieve the optimal Bayes error in performance (Devroye
et al., 1996). Unfortunately, due to sampling issues and computational complexity, using a large number k of near-
est neighbors may not be ideal. Thus, previous work has proposed methods to adaptively determine the number
of nearest neighbors to use for classification (Wang et al., 2006). Here we present a new Bayesian method for
adaptively choosing the optimal number of nearest neighbors, based upon an exponential prior for local densities
and Poisson statistics for nearest neighbor distances. We also show how this adaptive strategy can be interpreted
as an optimal decision making process, closely related to diffusion decision making in psychological and neurall
decision processes (Ratcliff and Mckoon, 2008).

We consider the following probabilistic model for nearest neighbors: given a local density A, the volume u
of the largest sphere inside the k-th nearest neighbor point is described by an Erlang distribution (Poczos and
Schneider, 2011):
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where NV is the total number of data points.

Here we describe how this distribution can be used for adaptive k-NN classification for two classes, with
obvious extensions to multiple classes. Given the k;-th nearest neighbor with spherical volume w; to class 1,
and the ko-th nearest neighbor with volume w5 to class 2, we formulate the posterior distributions over the local
class densities Ay and Ao via Bayes rule. For this analysis, we incorporate an expontial prior over local densities:
p(A) = bexp(—bA). The resulting posteriors can be integrated to yield the posterior likelihood that \; is larger
than A\5:
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It is interesting to note that this posterior is equivalent to the probability of flipping a biased coin ky + ko + 1
times, and observing less than k; number of heads. The Bayesian posterior in Eq. (2) can be efficiently computed
in an incremental fashion, and the nearest neighbor computation can be adaptively stopped when there is enough
evidence to make a classification. Traditional k-NN classification is equivalent to using k = 2k; — 1 as b — oo.

In Fig. 1, we show the results of a simulation where the optimal Bayes decision is A\; > As. The figure shows
how different realizations result in varying decision making times as the posterior likelihood becomes certain
enough to shortcut the nearest neighbor computation. The incremental computation of the estimated posterior is
displayed as a diffusion decision variable, which shows how some samples are immediately classified and others
delay the decision until enough nearest neighbor evidence has accumulated to cross the decision threshold.

Thus, our method can be interpreted as a diffusion decision model, which has been shown to be optimal in
systems with finite resources (Bogacz et al., 2006). By modulating the confidence level in the model, we can tune
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Figure 1: Bayesian nearest neighbor decision making process with (a) 80% confidence and (b) 90% confidence.
Sample data were generated from local densities \; = 0.8 and A2 = 0.2. The incremental computation of the
posterior P(A; > \2) is displayed for different realizations, and shows the threshold where enough evidence has
accumulated to make a classification. The bars represent the number of points that are correctly and incorrectly
classified at each stage of the computation. Using a larger confidence results in less error, but with an concomitant
increase in computation time.

the balance between using less computational resources with classification accuracy. We show how earlier models
can be viewed as special cases of our general method (Beck et al., 2008; Ma et al., 2006). We also show how our
methods perform on standard machine learning datasets in comparison to traditional nearest neighbor approaches.
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