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We describe a common framework under which a number of widely used, and seemingly disparate algo-
rithms for unsupervised learning can be cast. In this framework, an unsupervised algorithm simply estimates
the support of the distribution generating the data. The formulation makes clear the separation between the ap-
proximation and statistical components of the algorithms, leading to bounds on their performance. The analysis
further allows to set the free parameters of the algorithms to optimize the performance bounds. We show a pre-
cise relation between the support estimation view, and the alternative (generative) view of unsupervised learning
as approximating the data-generating distribution, establishing a formal relation between two interpretations of
unsupervised learning.
Interpretation of unsupervised learning. The problem of unsupervised learning is widely described as that of
recovering, or finding structure (patterns) in data sampled from a probability distribution [6]. The importance
of unsupervised learning is clear both from the availability of unlabeled data, as well as from its central role in
practical supervised learning systems. In particular, due to the recent progress in sensory systems and other data-
acquisition technology, the amount of unlabeled data is typically much more abundant, and often much more
cheaply acquired, than labeled data. Even for supervised learning tasks, many state-of-the-art systems use a pre-
liminary unsupervised stage, which is often of central importance [7, 13, 15]. From a theoretical perspective, it
is widely accepted that an unsupervised algorithm that is able to accurately approximate the input data while
reducing its dimensionality can have a significant impact on downstream supervised stages, whose finite sample
performance may be subject to some form of curse of dimensionality [4].
A unified view. The structure inferred in unsupervised learning has been variously interpreted to be, possi-
bly depending on the application, a clustering or partitioning of the data [9], a, possibly sparse, encoding of the
data [12], or learning a lower-dimensional approximation (manifold learning) [1, 14]. All these interpretations
have in common that they produce: 1) a compact representation, or estimate of the support of the data, in the form
an approximating set, and 2) an associated encoding with respect to this representation. For instance, the k-means
algorithm approximates the data by a discrete set of points (means), and encodes a sample by the index of its clos-
est mean (in way that resembles vector quantization [5]). Similarly, in PCA, the computed approximating set is a
lower-dimensional affine space, where each data point is encoded using its local coordinates in this space. Several
other unsupervised learning algorithms, such as sparse coding [12], k-flats [2], or non-negative matrix factoriza-
tion [8], can be easily shown to conform to this model [10, 11].
Empirical and expected error. In practice, an unsupervised learning algorithm typically has a tunable parameter
that controls the size, or complexity of the approximating set. For example, this parameter may be the number
of means in k-means, the dimension of the affine spaces in PCA, or the number of dictionary elements for sparse
coding. Once the parameter is chosen, most algorithms, including all the ones mentioned above, proceed by com-
puting the set that best approximates the available samples. In other words, they find the set that minimizes the
distance from the samples to their projection onto the set (in some cases, with some additional constraint in the
encoding, such as sparsity). Clearly, as the size of the set is increased, the distance from the available samples to
the approximating set cannot increase, and typically decreases. However, since we are ultimately interested in the
expected performance of the algorithm with respect to a random sample drawn from the true distribution, a ques-
tion naturally arises of whether a good approximation of the samples necessarily implies a good approximation
with respect to the distribution.
Regularization in unsupervised learning and bias-variance tradeoff. In this work, we show that, in general, the
answer to this question is negative, and thus that there is in general an optimal size/complexity for the approx-
imating set. In other words there is in general a tradeoff in which small sets may be of insufficient complexity
to accurately approximate the input, while sufficiently large sets that reproduce the empirical samples with high
fidelity may fail to perform well on the true distribution. Indeed, we show that, for widely-used unsupervised
algorithms, there is an inherent tradeoff between approximation accuracy and model size, which can be precisely
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analyzed. We illustrate these ideas using k-means and k-flats as examples, and demonstrate this tradeoff both in
theory and empirically. While there exist previous theoretical studies related to our analysis, see for example [3],
to the best of our knowledge, this inherent tradeoff in the model complexity of unsupervised learning algorithms,
very much akin to the classical bias-variance tradeoff of supervised learning, and its implications for their analysis
and practical use, has not been previously analyzed. We conclude noting that the setup we consider is very much
related to the problem of dictionary learning, where one is interested in finding compact/parsimonious data rep-
resentations. In this view, our results prove that for a given dataset (and a corresponding distribution) there exists
an optimal dictionary size defined by a suitable bias variance tradeoff.
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