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Artificial neural networks are computationally powerful and exhibit brain-like dynamics. However, it is generally
believed that the backpropagation algorithm, commonly used to train neural networks, is not biologically plausi-
ble [1]; backpropagation messages must not directly affect the original feedforward messages, in contradiction to the
pervasively recurrent architecture of the cortex [2].

More generally, the set of potential algorithms that the cortex might use for sensory processing, motor planning,
and learning is constrained by the structural properties of cortical architecture and dynamics. The recurrence of the
cortex, together with the requirement that training signals project directly to the trained structures in the brain,
implies that the cortex uses a single interdependent set of messages for both computation and learning. Moreover,
when faced with complicated or ambiguous input, the cortex can withhold a motor response until processing is
complete. We further assume that learning requires the approximate calculation of the gradient of a loss function,
and restrict our attention to networks in which this gradient can be calculated completely at a single network state.

From this modest set of constraints, we derive a novel class of recurrent neural networks, intrinsic gradient

networks, for which the gradient of the loss function with respect to the parameters is a simple function of the
network state when a self-identified output has been produced. Intrinsic gradient networks do not generally segregate
“feedforward” computation signals from “feedback” training signals, and so are potentially consistent with the
pervasive recurrence observed in the cortex. Within the class of intrinsic gradient networks, it is easy to identify
highly recurrent instances for which training is simple and local, thus satisfying all of the biological and computational
constraints identified above.

The set of intrinsic gradient networks is large and diverse; an example will demonstrate the power of this technique.
We can construct a hierarchical sparse coding intrinsic gradient network with consecutive layers of non-negative real-
valued units ~x1, ~x2, · · · , ~xn connected by parameter matrices Wi. The dynamics minimize1 the potential function2
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where δ is the Kronecker delta. This network differs from traditional hierarchical sparse coding networks [e.g., 3, 4]
primarily in that the magnitude of the output is fixed by a Lagrange multiplier. As a result of this small change,
the total derivative of the loss function3 (not the partial derivative, which is zero for all layers after the first) can be
calculated by equation 1, a simple function of the adjacent layers. Unlike probabilistic deep networks [e.g., 5], the
gradient is calculated exactly after a single run to convergence. To the extent that equation 1 can be computed using
only local signals, this network satisfies all of our biological and computational desiderata. When trained on the
MNIST database, a two-hidden-layer network with this structure learns small pen strokes as first-level features, and
agglomerations of strokes that differentiate between the digit classes as second-level features, as shown in figure 1.
Such a network can classify digits with no more than 2.2% error, and performance continues to improve as we refine
our network and training methodology.
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1Minimization is subject to the non-negativity constraint.
2The quantity we refer to as the potential function is sometimes called the energy function.
3The loss function only depends on the reconstruction of the input by the first hidden layer, the sparsity of each layer, and the

Lagrange multiplier. It is not the same as the potential function, which depends on the reconstruction of every hidden layer.
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Figure 1: Projective fields from a two-hidden layer hierarchical sparse coding intrinsic gradient network, with 400
units per layer, trained on MNIST. The first row of the figure depicts columns of W1; the second row depicts columns
of W1 · W2.

This hierarchical sparse coder is an instance of a parameterized family of intrinsic gradient networks that we
have constructed. This family includes generalizations of the example network to different connection topologies and
potential functions, but also includes networks with radically different dynamics. Intrinsic gradient networks consist
of a time-varying vector4 of real-valued units ~x(t) ∈ R

n. We write ~x to denote ~x(t) at some arbitrary point in time t.
The point at which the network has finished computing and produced an output is defined by the output functions
~F (~x, ~w) according to the fixed-point equation ~F (~x, ~w) = ~x, where ~w is a vector of parameters.5 At the output states

~x∗ where ~F (~x∗, ~w) = ~x∗, the desirability of the outputs is defined by the loss function L(~x, ~w). We find that intrinsic
gradient networks are characterized by the equation

S(~x, ~w) ·
(

~x − ~F (~x)
)

= ~T (~x) −∇L(~x) −
(

∇~F>(~x)
)

· ~T (~x) , (2)

where S(~x, ~w) is some matrix function and ∇ is the gradient with respect to ~x. When equation 2 is satisfied, the

training function ~T (~x, ~w) can be used to calculate the gradient of the loss function according to
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at the output states ~x∗; this gradient takes into account the fact that ~x∗ is a function of ~w defined by the fixed-point
equation. Any network dynamics that converge to a fixed point of ~F (~x, ~w) may be used, such as
d~x(t)
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= 1

τ
·
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)

.

We construct an analytic solution for the output functions ~F (~x) in equation 2 in terms of the loss function L(~x, ~w)

and the training function ~T (~x), in which S(~x) is a free parameter; the details of this solution are not included here
due to space constraints. A wide variety of different network topologies and dynamics can be induced by various
choices of the training function ~T (~x) and the free parameters in this solution. For instance, we can construct the
hierarchical sparse coding network described above by dividing ~x into consecutive layers ~x1, ~x2, · · · , ~xn connected
by parameter matrices Wi, and choosing ~T (~x) = S(~x) = ~x.
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4All vectors are column vectors unless otherwise noted.
5Most of our functions are dependent on both the network state ~x and the parameters ~w, but we often omit explicit mention of the

dependence on ~w to avoid cluttering our notation.


