
Fast Approximate Nearest Neighbor Search∗

Amit Goyal and Hal Daumé III
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Many problems in Computer Vision [6, 5] and Natural Language Processing [12, 3] involves finding l nearest

neighbors to the query. However, finding exact l nearest neighbors to the query can be time and memory intensive

[10, 9]. Hence, in some applications [10, 5] it may be acceptable to return approximate l nearest neighbors. In

this work, we propose a novel fast approximate nearest neighbor search algorithm and apply it to finding l similar

words with respect to a query word.

1 Preprocessing for Fast Approximate Nearest Neighbor Search

First, for every word “z”, we assume that we are given a context vector (〈(c1,v1);(c2,v2) . . . ;(cd ,vd)〉) of size d

where cd denotes the context and vd denotes the Pointwise Mutual Information (PMI) (strength of association)

between the context cd and the word “z” (vocabulary of Z words). The context can be lexical, predicate argument

structure and dependency units that co-occur with the word “z”. For each word, we use hashing to project the

context vectors onto k directions. We use k pairwise independent hash functions that maps each of the d context

(cd) dimensions onto βd,k ∈ {−1,+1}; and compute inner product between βd,k and vd . Next, ∀k,∑d βd,k.vd

returns the k random projections for each word “z”. We store the k random projections for all words (mapped to

integers) as a matrix A of size of k×Z.

The mechanism described above generates random projections by implicitly creating a random projection

matrix from a set of {−1,+1}. This idea of creating implicit random projection matrix is motivated by the

work on stable random projections [7] and online Locality Sensitive Hash [11]. The idea of generating random

projections from the set {−1,+1} was originally proposed by [1], then extended by [8].

For fast approximate search, we propose a novel approach, which involves two pre-processing steps:

First pre-processing step of fast approximate search is to create a binary matrix B using matrix A by taking

sign of each of the entries of the matrix A. If A(i, j)≥ 0, then B(i, j) = 1; else B(i, j) = 0. This binarization creates

Locality Sensitive Hash (LSH) function that preserves the cosine similarity between every pair of word vectors.

This idea was first proposed by Charikar [2] and used in NLP for large-scale noun clustering [10]. However, in

large-scale noun clustering work, they had to store the random projection matrix of size D× k; where D denotes

the number of all unique contexts (which is generally large and D >> Z) and in this paper, we do not explicitly

require to store a random projection matrix.

We then pre-process the matrix A. First for matrix A, we pair the words 1 · · ·Z and their random projection

values as shown in first matrix in Fig. 1. Second, we sort the elements of each row of matrix A by their random

projection values from smallest to largest (shown in second matrix in Fig. 1). The sorting step takes O(ZlogZ)
time (We can assume k to be a constant). The sorting operation puts all the nearest neighbor words (for each

k independent projections) next to each other. After sorting the matrix A, we throw away the projection values

leaving only the words (third matrix in Fig. 1). To search a word in matrix A in constant time, we create another

matrix C of size (k × Z) that is the fourth matrix from Fig. 1. Matrix C maps the words 1 · · ·Z to their sorted

position in the matrix A (third matrix from Fig. 1) for each k.

2 Fast Approximate Search

After the pre-processing is done, fast approximate search is very simple and fast. To search a word “z”, first, we

can look up matrix C to locate the k positions where “z” is stored in matrix A. This can be done in constant time

(Again assuming k to be a constant.). Once, we find “z” in each row, we can select b (beam parameter) neighbors

(b/2 neighbors from left and b/2 neighbors from right of the query word.) for all the k rows. This can be done in
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Figure 1: First matrix pairs the words 1 · · ·Z and their random projection values. Second matrix sorts each row by the random projection

values from smallest to largest. Third matrix throws away the projection values leaving only the words. Fourth matrix maps the words 1 · · ·Z
to their sorted position in the third matrix for each k. This allows constant query time for all the words.

jazz yale soccer physics wednesday brazil american bread man

reggae harvard basketball chemistry tuesday ecuador british cornbread woman

rockabilly cornell hockey biology thursday nicaragua canadian muffins person

rock fordham lacrosse biochemistry monday bolivia european waffles gentleman

indie tufts handball microbiology friday guatemala lithuanian oatmeal neighbour

folk dartmouth volleyball science sunday argentina german breads boy

ragtime nyu badminton economics yesterday panama korean baguette englishman

funk ucla softball psychology october cameroon hungarian cake foreigner

banjo princeton football neuroscience week mongolia armenian pastries texan

blues stanford tennis oceanography thurs colombia ethiopian applesauce bartender

symphonic loyola netball zoology september basf bulgarian toppings policeman

Table 1: Sample Top 10 similarity lists returned by fast approximate nearest neighbor search algorithm with k = 3000 and b = 40.

constant time (Assuming k and b to be constants.). This search procedure produces a set of bk potential nearest

neighbors for a query word “z”. Next, we compute Hamming distance between query word “z” and the set of

potential nearest neighbors from matrix B to return l closest nearest neighbors.

Our fast approximate search procedure is different from the one used in large-scale noun clustering work [10].

In their work, they used the search algorithm PLEB (Point Location in Equal Balls) first proposed by Indyk and

Motwani [4] and further improved by Charikar [2]. The improved PLEB algorithm involves generating p random

permutations of the binary matrix B, and Ravichandran et al. [10] used p = 1000 random permutations in their

work, which means storing p = 1000 copies of matrix B. In our work, we only use one copy of B and along with

that we store A and C to find potential nearest neighbors.

To evaluate the quality of our approximate search algorithm, we fix parameters k = 3000 and b = 40. We are

given a context vectors for 106,733 words of size d = 1000 and using our approximate algorithm, we find top 10

neighbors for each word. Table 1 shows the top 10 most similar words for some words found by algorithm.
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