
Q-Learning with a Multi-state Markov Decision Process ∗

Jiarong Jiang, Hal Daumé III

{jiarong,hal}@umiacs.umd.edu

University of Maryland, College Park

In standard Markov decision process (MDP)[Bel57] setting, an MDP consists of a (typically finite) state space
S, an action space A, a (possibly stochastic) transition function T , and a (possibly stochastic) reward function

R. An agent observes the current state s ∈ S and chooses an action a ∈ A. The environment responds
by moving the agent to another state s′ ∈ S, which is sampled from the MDP’s transition distribution
T (s′ | s, a), and by giving the agent a reward r, which is sampled from the MDP’s reward distribution
R(r | s, a) (For simplicity, here we assume reward function only depends on the resulting state and the
action taken). The agent’s goal is to maximize its total reward over time. An agent’s policy π describes how
the agent chooses an action based on its current state.

However, in real world applications, there are cases which are computationally easier to allow the agent
occupy multiple states at the same time and solve a MDP based on sets of states. More specifically, denote
the standard MDP M = (S,A, T,R).

Define the multi-state MDP based M as M+ = {S,A, T ,R} where

1. The state in M+: s̃ ∈ S = 2S which is a set of states in M .

2. The action ã = (s, a) ∈ A, s ∈ S, a ∈ A(s). In M+, the action is defined as choosing a state s ∈ S in
M and one of its corresponding actions a ∈ A(s).

3. The transition distribution T (s̃′ | s̃, ã) = T (s̃′\s̃|s, a) where ã = (s, a).

4. The reward function R(r̃ | s̃, ã) = R(r | s, a) for ã = (s, a).

Compared to M , M+ works as follows: An agent observes the current state s̃ ∈ S where s̃ ⊆ S. It choose
a substate s ∈ s̃ and take action a ∈ A(s). The environment responds by a new state s′ through choosing
a from s in M and expanding the agent to the state s̃′ = s̃ ∪ s′, which is sample from T . The environment
also gives the agent a reward r̃ which is sample from R̃. The agent’s goal is still to maximize its total reward
over the time.

Take a chart parser as an example: all the actions and rewards are deterministic and all the states are
non-revisitable. For M , s ∈ S is a current partial tree and a ∈ A(s) to choose one of the possible following
constituents to build on top of the partial tree. The accuracy is evaluated when there is no more constituent
to add (or a parse tree is found). For M+, now the state is all the existing partial trees, and the action is to
choose one of the partial tree and add a constituent on top of it. This is exactly what agenda-based parser
does. For the convenience, we add backpointers for each s ∈ s̃ to remember the expansion of the states for
the final reward. If we assume the cost for each expansion is positive, the final goal is to learn to trade off
speed and accuracy.

In this work, we use Q-learning[Wat89] to solve this MDP problem and want to show that there exists a
decomposition of the value such that

∗Topic: Reinforcement Learning

1

1. The Q-learning algorithm gives Q̃(s̃, ã) converges on M+ to Q̃∗(s̃, ã).
(This is analogous to the proof in [JJS94]).

2. If we run Q-learning algorithm on both M and M+ with some given initial state, Q̃∗(s̃, ã) = Q∗(s, a)
if ã = (s, a) and s, a are on the path from the intimal state to the final state in the optimal policy and
Q̃∗(s̃, ã) ≤ Q∗(s, a) otherwise.

3. The Q-learning algorithm on M+ converges faster (or equal) than the Q-learning algorithm on M .

References

[Bel57] R. Bellman. A markovian decision process. In Journal of Mathematics and Mechanics 6, 1957.

[JJS94] Tommi Jaakkola, Michael I. Jordan, and Satinder P. Singh. Convergence of stochastic iterative
dynamic programming algorithms. Neural Computation, 6:1185–1201, 1994.

[Wat89] C.J.C.H Watkins. Learning from delayed rewards. In Cambridge University, 1989.

2

