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The purpose of this presentation is to evaluate and benchmark ensemble methods for 
time series prediction for daily currency exchange rates using ensemble methods based 
on feedforward neural networks and kernel partial least squares (K-PLS). Ensemble 
methods reduce the variance on the forecasts and allow for the assessment of 
confidence metrics and risk for the forecasting model. The use of neural networks for 
time series forecasting has been well established and best practice methods are 
summarized in [1-3]. An obvious advantage of artificial neural networks is that the 
models are nonlinear and relatively easy to train. Shortcomings of the neural network 
literature for time series forecasting include (i) the lack of consensus for parameter 
settings; (ii) a lack of established standards for training neural networks; (iii) a lack of 
consistent evaluation metrics for time series forecasting; and (iv) a lack of clearly 
established benchmark problems. It has been shown that averaging neural network 
forecasts leads to more robust models that furthermore allow for an estimate of the 
confidence level [4]. Zimmermann reported that typically ensembles of 200 neural 
networks with the same neural network architecture, but with different seeds for the 
random weight initialization, are sufficient. Whereas Zimmermann applies ensembles of 
recurrent neural networks, ensembles of feedforward neural networks trained with the 
backpropagation algorithm will be applied in this work. In order to let training proceed in 
an automated fashion an extension of the Efficient BackProp strategy introduced by 
LeCun was applied [5, 6]. In addition, we propose two different types of ensemble 
methods: (i) an approach similar to that of Zimmermann, where the different neural 
networks have the same architecture, but are initialized with different random weights, 
and (ii) a novel ensemble strategy, where the training models use different weight 
initializations, but in addition, multiple cross-validation folds are used for training the 
neural networks. Two different types of time series forecasting methods will be 
investigated: (i) a one-step ahead prediction, and (ii) a roll-out prediction that will lead to 
long-term forecasts by feeding predictions back to the input space (just as if they were 
the actual values) and bootstrapping over successive steps to make multi-step ahead 
forecasts. 
A novel ensemble method for time series prediction based on Kernel Partial Least 
Squares (K-PLS) is also introduced. Kernel partial least squares [7-8] is a ”kernelization” 
of the (linear) Partial Least Squares method. PLS is widely applied in chemometrics and 
was first introduced by Herman Wold for latent variable analysis of socio-economical 
models [9]. Svante Wold showed that PLS is a robust linear method, with few 
parameters to tune, except for the number of latent variables [10]. 
This study found that daily exchange rates such as the US Dollar per Euro and the 
Australian Dollar per Euro are generally not very predictable from single time series 
data. However, the Indian Rupee per US Dollar returns for late 2011, were surprisingly 
predictable, even on a relatively long time-scale (see Fig. 1).  The ensemble method 



results for the two neural network approaches and K-PLS very similar to each other for a 
variety of metrics. 

 
Fig. 4. Long-term roll-out forecasts with error bounds for the Indian Rupee per US 

Dollar Returns for the period November 1, 2011 to December 14, 2011 based 
on neural network ensemble averaging by weight initialization, error bounds for 
the forecasts are also indicated. 
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