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In the infancy of backpropagation [1, 2], the shape of the (differentiable) activation function was
investigated as well as other hyperparameters (the number of hidden layers, their size, the learning
rate, etc.). The motive was likely that the two historical activation functions are limit cases of the

family Φ = {φλ(x) =
1−exp(−λx)
1+exp(−λx)}λ∈R+∗}: linear function for λ → 0 and hard threshold for λ → ∞.

Over time, people used to implement less rich models of multilayer neural networks and the choice
for activation function was limited to the logistic sigmoid (in ]0, 1[) or the hyperbolic tangent tanh
(in ]− 1,+1[). Note that tanh = φ2 belongs to the above defined Φ family of activation functions.
Such an oversimplification is not actually well-founded, as well as the reduction to 1 for the number
of hidden layers. Whereas the number of hidden layers has been revisited recently with the “deep
learning” current of research, the shape of activation functions is more seldom challenged, except
in [3, 4].

On the other hand, learning to extract “sparse” features from data is a burning research area, in
relation with compressed sensing, signal decomposition and dictionary learning. In the domain of
neural networks, inspiration comes either from physics, with energy-based models [3] or free energy
and linear filters [5], or from biology, with comparison to the response of a leaky integrate-and-fire
(LIF) neuron model [4]. Starting from a mathematical point of view, we propose to consider a new
family of activation functions, derived from Φ, which we call the sparsifying activation functions:
Ψ = {ψλ,µ(x) =

1−exp(−λx)
1+exp(−µx)}(λ,µ)∈R2 / µ > λ > 0}.

Figure 1: The sparsifier
(blue) matches the recti-
fier (purple) for x<0 and
matches the hyperbolic
tangent (brown) for x>0.

Since µ > λ, the asymptotic values of a ψλ,µ function are 0 in −∞ and 1 in +∞. However, for
easier comparison with tanh, a ψλ,µ function, also called “sparsifier”, as well as the “rectifier” (as
defined in [4]), can be rescaled with asymptotic values −1 and +1. Fig. 1 shows how a ψλ,µ function
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matches well the rectifier for x < 0 and tanh for x > 0. The numerator 1 − exp−λx controls the
behaviour of the positive section of the curve whereas the denominator 1 + exp−µx controls the
negative section, independently. A peculiar point is that a sparsifying activation function is no
longer monotonic: Its first derivative has a zero value in a negative point (x = −0.533208 in Fig. 1)
and the function tends towards its negative asymptote by lower values. Such characteristics are
not usual for artificial neuron activation functions, but henceforth the function is l∞ nothing in the
backpropagation algorithm prevents the use of a non monotonic activation function. The rectifier
has no derivative in zero, which yields the authors of [4] to add several artefacts to their neural
network. Moreover, the sparsifier is much more similar to the LIF neuron model response and its
small negative section (around the zero of its derivative) may also find a biological justification from
the shape of the well-known “mexican hat” function, observable in many biological neuron activities.

First experiments have shown several advantages of the sparsifying activation functions for
backpropagation learning: similar classification rates are reached after a fewer number of epochs;
the performance is more stable through time (compared to rectifying neurons); a sparsifier better
prevents overfitting (compared to tanh); and, last but not least, the sparsifying activation functions
yield learning sparse representations of the data. Finally, compared to the “sparsifying logistic” and
the algorithm defined in [3], the implementation of sparsifying activation functions is much more
straightforward.
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