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We propose a novel approach to embedding heterogeneous data in high-dimensional space characterized
by a graph. Targeted towards data visualization, the objectives of the embedding are two-fold: (i) preserve
proximity relations as measured by some embedding objective, and (ii) simultaneously optimize an aesthetic
criterion, no edge-crossings in the embedding, to create a clear representation of the underlying graph struc-
ture. This method is applicable for graphs where the nodes represent objects that have their own intrinsic
properties with associated distances or similarity measures that describe implicit relations between all pairs
of nodes. The motivating application for this work was generating visualizations for phylogenetic trees of
strains of Mycobacterium tuberculosis with defined genetic distances between every pair of strains. It is often
desirable, that drawings of such graphs map nodes from high-dimensional feature space to low-dimensional
vectors that preserve these pairwise distances. This desired quality is frequently expressed as a function of
the embedding and then optimized, e.g. in Multidimensional Scaling (MDS), the goal is to minimize the
difference between the actual pairwise distances and Euclidean distances in the embedding for all nodes.
However, layouts that preserve proximity relations can have a large number of edge-crossings obfuscating
the relationships between nodes making the graph difficult to understand and interpret. It is therefore desir-
able to minimize edge crossings. This is a challenging problem in itself; determining the minimum number
of crossings for a graph is NP-complete [2].

The principle contributions of this paper are (i) expressing edge-crossing minimization as a continuous
optimization problem (ii) An iterative penalty algorithm that elegantly incorporates the nonconvex nons-
mooth constraints arising from the edge-crossing minimization formulation into an optimization routine for
embedding objectives e.g. stress majorization in MDS [1].

Xu=y

Nem WS S0 Fig. 1: In (a) Edge A from a to ¢ and edge B from b

sy ',b to d do not cross. Any line between xu — v = 1 and
7 xu — vy = —1 strictly separates the edges. Using a soft

/a margin, the plane in (b) zu — v = 0 separates the
plane into half spaces that should contain each edge.

xu=y-1 xu=y+1

o8

The key theoretical insight of the paper is that the condition that two edges do not cross is equivalent
to the feasibility of a system of nonlinear inequalities. Two edges do not intersect iff the following system of
equations has no solution:
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a theorem of the alternative: Farkas’ lemma [3]. Therefore, two edges do not intersect iff ||[(—Au + (1 +
y)e)+|| + ||[(Bu+ (1 —7)e)4|| = 0 where (2)4 = max(0, 2). Geometrically the theorem states that two edges
(or more generally two polyhedrons) do not intersect if and only if there exists a hyperplane that strictly
separates the extreme points of A and B. Figure 1 illustrates that when this system is satisfied, any plane
that lies between xu+vy = 1 and xu-+~ = —1 strictly separates the two edges, and the edges do not intersect.
This formulation bears resemblance to the parallel hyperplanes used to find maximum margin hyperplanes



in SVM [4]. The no-edge-crossing constraint corresponds to introducing a hyperplane and requiring each
edge to lie in opposite half spaces. The constraints can be generalized to remove intersections of general
convex polygons including node-edge and node-node intersections. The proposed edge-crossing constraints
and iterative penalty algorithm can be readily adapted to other supervised and unsupervised optimization-
based embedding or dimensionality reduction methods.

While edge crossing minimization can be utilized in conjunction with any optimization-based embedding
objective, here we demonstrate the approach on multidimensional scaling by modifying the stress majoriza-
tion algorithm to include penalties for edge crossings. An alternating iterative penalty algorithm, Alternating
Majorization Algorithm (AMA) is developed, to minimize stress subject to a large number of non-convex
non-smooth constraints. The algorithm is applied to a problem in tuberculosis molecular epidemiology, cre-
ating ‘spoligoforests’ for visualizing genetic relatedness between strains characterized by fifty-five biomarkers
with associated non-Euclidean genetic distances of the Mycobacterium tuberculosis complex as shown in Fig.
2. Comparisons with other dimensionality reduction techniques and classical graph drawing algorithms are
made to demonstrate the efficacy of the method. The performance of the algorithm is also demonstrated
on a challenging test suite of randomly generated graphs. Computational results demonstrate that this ap-
proach is practical and tractable. Animations of the algorithm illustrating how the edge crossing penalty
progressively transform the graphs are provided http://www.cs.rpi.edu/~shabba/FinalGD/. 3

Fig. 2: Embeddings of spoligoforests of SpolDB4  u suews wsicisasion witn cane crorsing passites » Suuess worerization
sublineages by 7 algorithms. (e-h) generated by R "
classical graph drawing algorithms fail to repre- F O & . gt _~
sent genetic distances. Embeddings generated by N S

dimensionality reduction techniques (b-d) have a
large number of crossings, moreover all pairwise
distances are not preserved in (c-d). Graph (b),

that optimizes the MDS objective and generated 2 *;iz o
using Neato, preserves proximity relations but RVZRE0N .. 3?; %i‘-’«.'--“

has edge-crossings. In graph (a), the proposed = T e —
approach eliminates all edge crossings with little ens
change in the overall stress. Note how in graph
(a), the radial structure emerges naturally when
both distances and the graph structure are con-
sidered. i gaabaing

References

1. J. De Leeuw. Convergence of the majorization method for multidimensional scaling. Journal of classification,
5(2):163-180, 1988.

2. M.R. Garey and D.S. Johnson. Crossing number is np-complete. STAM Journal on Algebraic and Discrete Methods,
4:312, 1983.

3. O.L. Mangasarian. Nonlinear programming. Society for Industrial Mathematics, 1994.

4. V.N. Vapnik. The nature of statistical learning theory. Springer Verlag, 2000.

3 Preference:Oral/Poster



