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Stacked Denoising Autoencoders (SDAs) [4] have been used successfully in many learning scenarios and application
domains. In short, denoising autoencoders (DAs) train one-layer neural networks to reconstruct input data from partial
random corruption. The denoisers are then stacked into deep learning architectures where the weights are fine-tuned
with back-propagation. Alternatively, the outputs of intermediate layers can be used as input features to other learning
algorithms. These learned feature representations are known to improve classification accuracies in many cases. For
example, Glorot et. al. [3] applied SDAs to domain adaptation and demonstrated that these learned features , when
used with a simple linear SVM classifier, yield record performance in benchmark sentiment analysis tasks [1].

One downside of SDAs is the arguably long training time, which often entails specialized computing supports such
as GPUs, especially for large-scale tasks. In this abstract we propose a variation to SDAs, in which the random
corruption is marginalized out. This crucial step yields the optimal reconstruction weights computed in closed-form
and eliminates the use of back-propagation for tuning. We show that the features learned with our approach lead to
comparable classification accuracy as SDAs’. The training time, however, reduces by orders of magnitude – from up
to 19 hours for SDAs to mere 3 minutes with our approach.

Linear Denoiser. The basic building block of our framework is a one-layer linear denoising autoencoder. From a
given set of inputs D, we sample inputs x1, . . .xm with replacement, where typically m > |D|. We corrupt these
inputs by random feature removal — each feature is set to 0 with probability p. Let us denote the corrupted version
of xi as x̃i. As opposed to the nonlinear encoder in SDAs, we reconstruct the corrupted inputs with a linear mapping
W : Rd→Rd, that minimizes the squared reconstruction loss

L(W) =
1

m

m∑
i=1

‖xi −Wx̃i‖2. (1)

To simplify notation, we assume that a constant feature is added to the input, xi = [xi; 1], and a corresponding bias
is incorporated within the mapping [W,b]. The constant feature is never corrupted. Let us define the design matrix
X = [x1, . . . ,xm] and X̃ = [x̃1, . . . , x̃m] to be its corrupted version. Then the solution of (1) can be expressed as the
well-known closed-form solution for ordinary least squares

W = PQ−1, where Q = X̃X̃> and P = XX̃>. (2)

Noise Marginalization. The solution to (2) depends on the re-sampling of the inputs x1, . . . ,xm and which features
are randomly corrupted. Ideally, we would like to consider all possible corruptions of all possible inputs when the
denoising transformation W is computed, i.e. letting m→∞. By the weak law of large numbers, the matrices P and
Q converge to their expected values E[Q], E[P] as we create more copies of the corrupted data. In the limit, we can
derive their expectations and express the corresponding mapping for W in closed form as

W = E[P]E[Q]−1, where: E[Q]α,β =

{
Sαβqαqβ if α 6= β
Sαβqα if α = β

, and E[P]αβ = Sαβqβ , (3)

where q = [1−p, . . . , 1−p, 1]>∈Rd+1 and for notational convenience, S = XX> denotes the covariance matrix of
the uncorrupted data. We refer to this closed-form denoising layer as marginalized Denoising Autoencoder (mDA).
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Figure 1: Transfer ratio and training times across 12 domain adaptation tasks, see texts for details.

marginalized Stacked Denoising Autoencoder (mSDA). A key component of the success of SDAs is the fact that
they consist of multiple stacked layers of denoising autoencoders, which creates a “deep” learning architecture. Our
framework has the same capability. We stack several mDA layers together by feeding the representations of the tth
denoising layer as the input to the (t+1)th layer. Each transformation Wt is learned to reconstruct the previous mDA
output ht−1 from its corrupted equivalent. In order to extend our mapping beyond a linear transformation, we apply
a non-linear “squashing”-function between layers. We obtain each layer’s representation from its pre-ceeding layer
through ht= tanh

(
Wtht−1

)
, with h0=x denoting the input.

High Dimensional Data. Many data sets (e.g. bag-of-words text documents) are naturally high dimensional. For
the feature reconstruction to be successful, SDAs typically learn O(d2) parameters. This is costly in training time
and prevents SDAs from extracting information from rarer but important features. High dimensionality also poses
a challenge to mSDA, as the inversion of the outer-product matrix Q, E[Q] ∈ Rd×d in (2) and (3) would become
prohibitively expensive. To overcome this challenge, we leverage the concept of “pivot features” from [1]. Instead of
aiming to reconstruct all the corrupted features at once, we reconstruct a subset of pivot features only (here the 5000
most common features). We divide all input features intoK subsets and learnK rectangular matrices for pivot-feature
reconstruction. K is chosen so that each subset is of a manageable size. The K resulting pivot reconstructions are
summed. Subsequent layers are in the pivot-space only and require no special treatment. We use this approach to
scale-up the dimensionality of both SDAs, and mSDA.

Results. Figure 1 shows the sentiment analysis results on Amazon review benchmark [1]. The left plot compares
mSDA (with 1, 2, 3, 4, 5 layers respectively) with SDAs [3], Co-training for domain adaptation (CODA) [2], Structural
Correspondence Learning (SCL) [1] and simple PCA feature transformation. The transfer ratio denotes the ratio of the
classification error of the adapted classifier (trained on source) over by the error of a classifier trained on true target-
domain data of 5,000 pivot features. Two trends can be observed: 1. the transfer ratio of mSDA keeps improving with
additional layers; and 2. the training time of mSDA is two orders of magnitude below that of SDAs with comparable
transfer ratio. The right plot shows the SDA and mSDA performance as the input dimensionality of the data increases
(words are picked in decreasing order of their frequency). Clearly, algorithms benefit from having more features up to
30, 000. mSDA matches the performance of SDA consistently and is up to 450 times faster in training.
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