
Learning Nonlinear Functions Using Regularized Greedy Forest

Rie Johnson
RJ Research Consulting

Tong Zhang
Rutgers University

January 27, 2012

Abstract

We apply the concept of structured sparsity to improve boosted decision trees with general loss
functions. The existing approach to this problem is Friedman’s gradient boosting procedure using a re-
gression tree base learner. Although this method has led to many successful industrial applications, it
suffers from several theoretical and practical drawbacks. By employing the idea of structured greedy
search, we are able to design a regularized greedy forest procedure to address these issues. The resulting
method constructs tree ensembles more effectively than gradient boosting, and achieves better perfor-
mance on most datasets we have tested on. This work suggests that we can view boosted decision trees
as procedures that construct high order nonlinear interactions through the concept of structured sparsity
regularization, and this general view can guide us to design nonlinear learning algorithms that are more
effective than existing methods.

1 Introduction

Many application problems in machine learning require learning nonlinear functions from data. A popular
method to solve this problem is through decision tree learning (such as CART[4] and C4.5[21]), which has an
important advantage for handling heterogeneous data with ease when different features come from different
sources. This makes decision trees a popular “black box” machine learning method that can be readily
applied to any data without much tuning; in comparison, alternative algorithms such as neural networks
require significantly more tuning. However, a disadvantage of decision tree learning is that it does not
generally achieve the most accurate prediction performance, when compared to other methods. A remedy
for this problem is through the “boosting” idea [11, 14, 22], where one builds an additive model of decision
trees by sequentially building trees one by one. In general “boosted decision trees” is regarded as the most
effective black-box nonlinear learning method for a wide range of application problems.

In the boosted tree approach, one considers an additive model over multiple decision trees, and thus,
we will refer to the resulting function as a “decision forest”. Other approach to learning decision forests
include Bagging and Random Forest [5, 6]. In this context, we may view boosted decision tree algorithms
as methods to learn decision forests by applying a greedy algorithm (boosting) on top of a decision tree
base learner. This indirect approach is sometimes referred to as a “wrapper approach” in computer science
(in this case, wrapping boosting procedure over decision tree base learner); the boosting wrapper simply
treats the decision tree base learner as a black box and it does not take advantage of the tree structure itself.
The advantage of such a “wrapper approach” is that the underlying base learner can be changed to other
procedures with the same wrapper; the disadvantage is that for any specific base learner which may have
additional structure to explore, a generic wrapper might not be the optimal aggregator.

1



Due to the practical importance of boosted decision trees in applications, it is natural to ask whether
one can design a more direct procedure that specifically learns decision forests without using a black-box
decision tree learner under the wrapper. The purpose of doing so is that by directly taking advantage of
the underlying tree structure, we shall be able to design a more effective algorithm for learning the final
nonlinear decision forest. This paper attempts to address this issue, where we propose a direct decision forest
learning algorithm called Regularized Greedy Forest or RGF. We are specifically interested in improving
Friedman’s gradient boosting decision tree (GBDT) approach [14] which has the ability to handle general
loss functions (while other boosting methods such as Adaboost are specific to certain loss functions), and has
a wider range of applicability. We show that RGF can deliver better results than GBDT on many datasets.

2 Problem Setup

We consider the problem of learning a single nonlinear function h(x) on some input vector x = [x[1], . . . ,x[d]] ∈
Rd from a set of training examples. In supervised learning, we are given a set of input vectors X =
[x1, . . . ,xn] with labels Y = [y1, . . . , ym] (here m may not equal to n). Our training goal is to find a
nonlinear prediction function h(x) from a function classH that minimizes a risk function

ĥ = arg min
h∈H
L(h(X), Y ). (1)

Here H is a pre-defined nonlinear function class, h(X) = [h(x1), . . . , h(xn)] is a vector of size n, and
L(h, ·) is a general loss function of vector h ∈ Rn.

The loss function L(·, ·) is given by the underlying problem. For example, for regression problems, we
have yi ∈ R and m = n. If we are interested in the conditional mean of y given x, then the underlying loss
function corresponds to least squares regression as follows:

L(h(X), Y ) =
n∑
i=1

(h(xi)− yi)2.

In binary classification, we assume that yi ∈ {±1} and m = n. We may consider the logistic regression
loss function as follows:

L(h(X), Y ) =
n∑
i=1

ln(1 + e−h(xi)yi).

Another important problem that has drawn much attention in recent years is the pair-wise preference learning
(for example, see [17, 12]), where the goal is to learn a nonlinear function h(x) so that h(x) > h(x′) when
x is preferred over x′. In this case, m = n(n− 1), and the labels encode pair-wise preference as y(i,i′) = 1
when xi is preferred over xi′ , and y(i,i′) = 0 otherwise. For this problem, we may consider the following
loss function that suffers a loss when h(x) ≤ h(x′) + 1. That is, the formulation encourages the separation
of h(x) and h(x′) by a margin when x is preferred over x′:

L(h(X), Y ) =
∑

(i,i′):y(i,i′)=1

max(0, 1− (h(xi)− h(xi′)))
2.

Given data (X,Y ) and a general loss function L(·, ·) in (1), there are two basic questions to address
for nonlinear learning. The first is the form of nonlinear function class H, and the second is the learn-

2



ing/optimization algorithm. This paper achieves nonlinearity by using additive models of the form:

H =

h(·) : h(x) =

K∑
j=1

αjgj(x); ∀j, gj ∈ C

 , (2)

where each αj ∈ R is a coefficient that can be optimized, and each gj(x) is by itself a nonlinear function
(which we may refer to as a nonlinear basis function or an atom) taken from a base function class C. The
base function class typically has a simple form that can be used in the underlying algorithm. This work
considers decision rules as the underlying base function class that is of the form

C =

g(·) : g(x) =
∏
j

I(x[ij ] ≤ tj)
∏
k

I(x[ik] > tk)

 , (3)

where {(ij , tj), (ik, tk)} are a set of (feature-index, threshold) pair, and I(x) denotes the indicator function:

I(p) =

{
1 if p is true
0 otherwise

.

Since the space of decision rules is rather large, for computational purposes, we have to employ a
structured search over the set of decision rules. The optimization procedure we propose is a structured
greedy search algorithm which we call regularized greedy forest (RGF). Since this procedure is specifically
targeted at improving the popular gradient boosting algorithm [14], in the next section we shall briefly
describe this algorithm as well as its pros and cons.

3 Gradient Boosted Decision Tree

Gradient boosting is a method to minimize (1) with additive model (2) by assuming that there exists a
nonlinear base learner (or oracle) A that satisfies Assumption 1.

Assumption 1. A base learner for a nonlinear function class A is a regression optimization method that
takes as input any pair X̃ = [x̃1, . . . , x̃n] and Ỹ = [ỹ1, . . . , ỹn] and output a nonlinear function ĝ =
A(X̃, Ỹ ) that approximately solve the regression problem:

ĝ ≈ arg min
g∈C

min
β∈R

n∑
j=1

(β · g(x̃j)− ỹj)2.

The gradient boosting method is a wrapper (boosting) algorithm that solves (1) with a base learner A
defined above and additive model defined in (2). The general algorithm is described in Algorithm 1. Of
special interest for this paper and for general applications is the decision tree base learner, for which C is
the class of J-leaf decision trees, with each node associated with a decision rule of the form (3). In order
to take advantage of the fact that each element in C contains J (rather than one) decision rules, Algorithm 1
can be modified by adding a partially corrective update step that optimizes all J coefficients associated with
the J decision rules returned by A. This adaption was suggested by Friedman and implemented in our

3



experimental comparisons. We shall refer to this modification as gradient boosted decision tree (GBDT),
and the details are listed in Algorithm 5.

Algorithm 1: Generic Gradient Boosting [14]
h0(x)←0
for k = 1 to K do

Ỹk←− ∂L(h, Y )/∂h|h=h(X)

gk←A(X, Ỹk)
βk← arg minβ∈R L(hk−1(X) + β · gk(X), Y )
hk(x)←hk−1(x) + sβkgk(x) // s is a shrinkage parameter

end
return h(x) = hK(x)

Gradient boosting may be regarded as a functional generalization of gradient descent method hk ←
hk−1 − sk∂L(ht)/∂ht, where st (corresponding to the shrinkage parameter s) is the step-size, and Ỹk =
−∂L(ht)/∂ht is approximated using the regression tree output A(X, Ỹk). The shrinkage parameter s > 0
is a tuning parameter that can affect performance, as noticed by Friedman. In fact, the convergence of the
algorithm generally requires choosing sβk → 0 as indicated in the theoretical analysis of [25], which is
also natural when we consider that it is analogous to step size in gradient descent. This is consistent with
Friedman’s own observation, who argued that in order to achieve good prediction performance (rather than
computational efficiency), one should take as small a step size as possible (preferably infinitesimal step size
each time), and the resulting procedure is often referred to as ε-boosting.

GBDT constructs a decision forest which is an additive model of K decision trees. The method has
proven to be very successful for many application problems, and its main advantage is that the method can
automatically find nonlinear interactions via decision tree learning (which can easily deal with heteroge-
neous data), and it has relatively few tuning parameters for a nonlinear learning scheme (the main tuning
parameters are the shrinkage parameter s, number of terminals per tree J , and the number of trees K).
However, it has a number of disadvantages as well, which we address in this work. The first disadvantage
is that there is no explicit regularization in the algorithm, and in fact, it is argued in [25] that the shrinkage
parameter s plus early stopping (that is K) interact together as a form of regularization. In addition, the
number of nodes J can also be regarded as a form of regularization. The interaction of these parameters in
term of regularization is unclear, and the resulting implicit regularization may not be effective. The second
disadvantage is also a consequence of using small step size s as implicit regularization, as this can lead to
huge number of trees, which is very undesirable in applications due to the increased computational cost.
Note that in order to achieve good performance, it is often necessary to choose a small shrinkage parameter
s and hence large K; in the extremely scenario of ε-boosting, one needs an infinite number of trees. The
third disadvantage is that the regression tree learner is treated as a black box, and its only purpose is to
return J nonlinear terminal decision rule basis functions. This again may not be effective because the pro-
cedure separates tree learning and forest learning, and hence the algorithm itself is not necessarily the most
effective method to construct the decision forest. The purpose of this work is to remedy these drawbacks
by presenting a method that directly learns a decision forest using structured greedy search and structured
sparsity regularization.

4



4 Fully-Corrective Greedy Update and Structured Sparsity Regularization

One disadvantage of gradient boosting is that in order to achieve good performance in practice, the shrinkage
parameter s often needs to be small, and Friedman himself argued for infinitesimal step size. This practical
observation is supported by the theoretical analysis in [25] which showed that if we vary the shrinkage s for
each iteration k as sk, then for general loss functions with appropriate regularity conditions, the procedure
converges as k → ∞ if we choose the sequence sk such that

∑
k sk|βk| = ∞ and

∑
k s

2
kβ

2
k < ∞. This

condition is analogous to a related condition for the step size of gradient descent method which also requires
the step-size to approach zero. Fully Corrective Greedy Algorithm is a modification of Gradient Boosting
that can avoid the potential small step size problem. The procedure is described in Algorithm 2.

Algorithm 2: Fully-Corrective Gradient Boosting [23]
h0(x)←0
for k = 1 to K do

Ỹk←− ∂L(h, Y )/∂h|h=h(X)

gk←A(X, Ỹk)
letHk = {

∑k
j=1 βjgj(x) : βj ∈ R}

hk(x)← arg minh∈Hk
L(h(X), Y ) // fully-corrective step

end
return h(x) = hK(x)

In gradient boosting of Algorithm 1 (or its variation with tree base learner of Algorithm 5), the algorithm
only does a partial corrective step that optimizes either the coefficient of the last basis function gk (or the
last J coefficients). The main difference of the fully-corrective gradient boosting is the fully-corrective-step
that optimizes all coefficients {βj}kj=1 for basis functions {gj}kj=1 obtained so far at each iteration k. It was
noticed empirically that such fully-corrective step can significantly accelerate the convergence of boosting
procedures [24]. This observation was theoretically justified in [23] where the following rate of convergence
was obtained under suitable conditions: there exists a constant C0 such that

L(hk(X), Y ) ≤ inf
h∈H

[
L(h(X), Y ) +

C0‖h‖2C
k

]
,

where C0 is a constant that depends on properties of L(·, ·) and the function classH, and

‖h‖C = inf

∑
j

|αj | : h(X) =
∑
j

αjgj(X); gj ∈ C

 .

In comparison, with only partial corrective optimization as in the original gradient boosting, no such conver-
gence rate is possible. Therefore the fully-corrective step is not only intuitively sensible, but also important
theoretically. The use of fully-corrective update (combined with regularization) automatically removes the
need for using the undesirable small step s needed in the traditional gradient boosting approach.

However, such an aggressive greedy procedure will lead to quick overfitting of the data if not appropri-
ately regularized (in gradient boosting, an implicit regularization effect is achieved by small step size s, as
argued in [25]). Therefore we are forced to impose an explicit regularization to prevent overfitting.

This leads to the second idea in our approach, which is to impose explicit regularization via the concept
of structured sparsity that has drawn much attention in recent years [3, 20, 19, 1, 2, 18]. That is, we will
include a regularization term in our learning formulation that not only encourages using a small number of

5



decision rules (sparsity), but also takes advantage of the underlying forest structure. In our setting, we are
interested in an additive model h(x) that is a linear combination of decision rules g(x) in (3). Each decision
rule is a basis function or atom, and the additive model h(x) is a sparse combination of g(x). This problem
can be considered as a variable selection problem. However, search over all nonlinear interactions (atoms)
over C is computationally difficult or infeasible; one has to impose structured search over atoms, and in our
case, a forest structure in Figure 2. This naturally corresponds to the recently investigated concept of struc-
tured sparsity. The ideas is that by exploring the fact that not all sparsity patterns are equally likely, one can
select appropriate variables (corresponding to decision rules in our setting) more effectively by preferring
certain sparsity patterns more than others. For our purpose, one may impose structured regularization and
search to prefer one sparsity pattern over another.

Algorithmically, one can explore the use of an underlying graph structure that connects different vari-
ables in order to search over sparsity patterns. The general concept of graph-structured sparsity were consid-
ered in [1, 2, 18]. A simple example is presented in Figure 1, where each node of the graph indicates a vari-
able (non-linear decision rule), and each gray node denotes a selected variable. The graph structure is used to
select variables that form a connected region; that is, we may grow the region by following the edges from the
variables that have been selected already, and new variables are selected one by one. Figure 1 indicates the
order of selection. This approach reduces both statistical complexity and algorithmic complexity. The algo-
rithmic advantage is quite obvious; statistically, using the information theoretical argument in [18], one can
show that the generalization performance is characterized by O(

∑
j∈{selected nodes} log2 degree(parent(j))),

while without structure, it will be O(#{selected nodes} · ln p), where p is the total number of atoms in C.
Based on this general idea, [2] considered the problem of learning with nonlinear kernels induced by an
underlying graph.

1

2 3

4 5 6

7

9 10

8

11

Figure 1: Graph Structured Sparsity

This work considers the special but important case of learning a forest of nonlinear decision rules; al-
though this may be considered as a special case of the general structured sparsity learning with an underlying
graph, the problem itself is rich and important enough and hence requires a dedicated investigation. Specif-
ically, we integrate this framework with specific tree-structured regularization and structured greedy search
to obtain an effective algorithm that can improve the popular and important gradient boosting method. In the
context of nonlinear learning with graph structured sparsity, we note that a variant of boosting was proposed
in [13], where the idea is to split trees not only at the leaf nodes, but also at the internal nodes at every
step. However, the method is prone to overfitting due to the lack of regularization, and is computationally

6



expensive due to the multiple splitting of internal nodes. We shall avoid such a strategy in this work.

5 Regularized Greedy Forest

Our solution, regularized greedy forest (RGF), is designed to overcome GBDT’s shortcomings. The first
problem of GBDT is the lack of explicit regularization and complex control. Our solution is to introduce an
explicit regularization functional on the nonlinear function h and optimize

ĥ = arg min
h∈H

[L(h(X), Y ) +R(h)] (4)

instead of (1). The regularizer we introduce explicitly depends on the underlying forest structure, and the
numerical algorithm also takes advantage of such structure. The second problem of GBDT is the shrinkage
parameter s, which is important for performance; however, when s is small, a huge number of trees is neces-
sary, and this raises computational complexity. Our solution is to employ fully-corrective greedy algorithm
which repeatedly performs greedy search and re-optimization of all coefficients. This does not lead to over-
fitting because explicit regularization is introduced in our formulation, and thus we can avoid the problem
introduced by using small s. The third problem of GBDT is treating tree learning as a black-box, which is
decoupled from the boosting (wrapper) step. Our solution is to employ the concept of graph structured spar-
sity, and perform structured greedy search directly over forest nodes. At the conceptual level, our nonlinear
function h(x) is explicitly defined as an additive model on forest nodes (rather than trees) consistent with
the underlying graph sparsity structure (i.e. forest structure). Conceptually gradient boosting algorithm is
designed for an additive model on trees (tree ensemble) even though at a finer level it is also an additive
model of forest nodes. As a result, the structure of the finer level (i.e., node level) is not sufficiently explored
by the GBDT algorithm.

In summary, the proposed regularized greedy forest (RGF) approach is designed to learn a decision
forest directly. Before going into more details, we shall introduce some definitions and notation that allow
us to formally define the underlying formulations and procedures.

5.1 Definitions and notation

A forest is an ensemble of multiple decision trees T1, . . . , TK that are connected with a common root. The
forest shown in Figure 2 contains three trees T1, T2, and T3. The common root node is equivalent to the
root nodes for the trees T1, T2, T3, and they are duplicated in the graphical representation for convenience.
Each tree edge e is associated with a variable ke and threshold te, and denotes a decision of the form
I(x[ke] ≤ te) or I(x[ke] > te). Each node denotes a nonlinear decision rule of the form (3), which is the
product of decisions along the edges leading from the common root to this node. The common root itself
denotes the constant function. Although the underlying graph of this decision forest is a “tree” from the
graph theoretical point of view, we call this structure a forest instead of tree due to the semantics of the node
described above.

Mathematically, each node v of the forest is associated with a decision rule of the form

gv(x) =
∏
j

I(x[ij ] ≤ tij )
∏
k

I(x[ik] > tik) ,

which serves as a basis function or atom for the additive model considered in this paper. Note that if v1 and
v2 are the two children of v, then gv(x) = gv1(x)+gv2(x). This means that any internal node is redundant in

7



root T1

T2

T3

Figure 2: Decision Forest

the sense that an additive model with basis functions gv(x), gv1(x), gv2(x) can be represented as an additive
model over basis functions gv1(x) and gv2(x). Therefore it can be shown that an additive model over all tree
nodes always has an equivalent model (equivalent in terms of output) over leaf nodes only. This property
is important for computational efficiency because it implies that we only have to consider additive models
over leaf nodes. However, internal nodes are still useful conceptually as we will see later that we can define
tree-structured regularization based on all nodes including internal nodes.

Now, let F represent a forest, and each node v of F is associated with (gv, αv, θv). Here gv is the basis
function that this node represents; αv is the weight or coefficient assigned to this node; and θv represents
other attributes of this node such as the depth and all the information sufficient for reconstructing the forest
and defining tree-structured regularization introduced later. The additive model of this forest F considered
in this paper is:

hF (x) =
∑
v∈F

αv · gv(x) ,

or if we emphasize the fact that our model is over leaf nodes only,

hF (x) =
∑
v∈LF

αv · gv(x) ,

where LF represents the set of leaf nodes in forest F . We can then rewrite the regularized loss in (4)
as follows to emphasize that the regularizer depends on the underlying forest structure, by replacing the
regularization termR(hF ) with G(F):

Q(F) = L(hF (X), Y ) + G(F). (5)

5.2 Algorithmic framework

The training objective of RGF is to build a forest that minimizes Q(F) defined in (5). Since the exact
optimum solution is difficult to find, we greedily select the basis functions and optimize the weights. The
key algorithmic ideas can be described as follows: first we build a forest by growing possibly multiple trees
simultaneously; second, we use structured greedy search algorithm to search over nonlinear decision rules
one by one based on the underlying forest (graph) structure; third, perform fully-corrective greedy search so
that all the coefficients of the nonlinear decision rules are re-optimized repeatedly while the rules are added

8



into the forest by greedy search; fourth, we use individual tree structures in the forest to define regularizers
on additive models associated with each tree. Finally all computation is performed using leaf-nodes only,
although internal nodes can be used to define the regularization condition. This is possible because, as
we have pointed out earlier, an additive model over all forest nodes can be equivalently represented by an
additive model over only leaf-nodes of the same forest.

At the high level, we may summarize RGF in a generic algorithm in Algorithm 3. It essentially has two
main components as follows.

• Fix the weights, and change the structure of the forest (which changes basis functions) so that the loss
Q(F) is reduced the most (Line 2–4).

• Fix the structure of the forest, and change the weights so that loss Q(F) is minimized (Line 5).

Algorithm 3: Regularized greedy forest framework

1 F←{}.
repeat

2 ô← arg mino∈O(F)Q(o(F)) where O(F) is a set of all the structure-changing operations
applicable to F .

3 if (Q(ô(F)) ≥ Q(F)) then break // Leave the loop if ô does not reduce the loss.
4 F←ô(F). // Perform the optimum operation.
5 if some criterion is met then optimize the leaf weights in F to minimize loss Q(F).

until some exit criterion is met;
Optimize the leaf weights in F to minimize loss Q(F).
return hF (x)

5.3 Specific Implementation

There may be more than one way to instantiate useful algorithms based on Algorithm 3. Below, we describe
what we found effective and efficient.

5.3.1 Search for the optimum structure change (Line 2)

For computational efficiency, we only allow the following two types of operations in the search strategy:

• to split an existing leaf node,

• to start a new tree (i.e., add a new stump to the forest).

Search is done with the weights of all the existing leaf nodes fixed, by repeatedly evaluating the maximum
loss reduction of all the possible structure changes. When it is prohibitively expensive to search the entire
forest (and that is often the case with practical applications), we limit the search to the most recently-created
t trees with the default choice of t = 1. This is the strategy in our current implementation. For example,
Figure 3 shows that at the same stage as Figure 2, we may either consider splitting leaf nodes marked with
symbol X or grow a new tree T4.

Consequently, RGF does not require the tree size parameter needed in GBDT. With RGF, the size of
each tree is automatically determined as a result of minimizing the regularized loss.

9



root T1

T2

T3

x

x

T4

Figure 3: Decision Forest Splitting Strategy (we may either split leaf nodes X or grow a new tree T4)

Computation Consider the evaluation of loss reduction by splitting a node associated with (g, α, θ) into
the nodes associated with (gu1 , α+ δ1, θu1) and (gu2 , α+ δ2, θu2). Then the model associated with the new
forest F̃ = o(F) after splitting the node can be written as:

hF̃ (x) = hF (x)− α · g(x) +
2∑

k=1

(α+ δk)guk(x) = hF (x) +
2∑

k=1

δk · guk(x). (6)

Recall that our additive models are over leaf nodes only. The node that was split is no longer leaf and there-
fore α · g(x) is removed from the model. The second equality is from g(x) = gu1(x) + gu2(x) due to the
parent-child relationship. To emphasize that δ1 and δ2 are the only variables in F̃ for the current computa-
tion, let us write F̃(δ1, δ2) for the new forest. Our immediate goal here is to find arg minδ1,δ2 Q(F̃(δ1, δ2)).

Actual computation depends on Q(F). In general, there may not be an analytical solution for this
optimization problem, whereas we need to find the solution in an inexpensive manner as this computation
is repeated frequently. For fast computation, one may employ gradient-descent approximation as used in
gradient boosting. However, the sub-problem we are looking at is simpler, and thus instead of the simpler
gradient descent approximation, we perform one Newton step which is more accurate; namely, we obtain
the approximately optimum δ̂k (k = 1, 2) as:

δ̂k =
−∂Q(F̃(δ1,δ2))

∂δk
|δ1=0,δ2=0

∂2Q(F̃(δ1,δ2))
∂δ2k

|δ1=0,δ2=0

. (7)

In particular, suppose that loss function is for either regression or classification tasks, then Q(F) can be
written in the following form

Q(F) =

n∑
i=1

`(hF (xi), yi)/n+ G(F) .

In this case, ∂hF̃ (x)
∂δk

= guk(x), ∂
2hF̃ (x)

∂δ2k
= 0, and hF (x) = hF̃(0,0)(x) by (6); thus δ̂k in (7) can be rewritten

as:

δ̂k =
−
∑

guk (xi)=1
∂`(h,y)
∂h |h=hF (xi),y=yi − n

∂G(F̃(δ1,δ2))
∂δk

|δ1=0,δ2=0∑
guk (xi)=1

∂2`(h,y)
∂h2

|h=hF (xi),y=yi + n∂
2G(F̃(δ1,δ2))

∂δ2k
|δ1=0,δ2=0

.

10



-1.2

1.6 1.2

0.1 -2.4

1.2

0.3 -0.1

1.2+0.1+0.3=1.6

1.2+0.1-0.1=1.2

1.2-2.4=-1.2

Figure 4: Example of Equivalent Models

For example, with square loss `(h, y) = (h − y)2/2 and L2 regularization penalty G(F) = λ
∑

v∈F α
2
v/2,

we have

δ̂k =

∑
guk (xi)=1(yi − hF (xi))− nλα∑

guk (xi)=1 1 + nλ
,

which is the exact optimum for the given split.

5.3.2 Weight optimization/correction (Line 5)

With the basis functions fixed, the weights can be optimized using a standard procedure if the regularization
penalty is standard (e.g., L1- or L2-penalty). In our implementation we perform coordinate descent, which
iteratively goes through the basis functions and in each iteration updates the weights by a Newton step with
a small step size:

αv←αv + η ·
−∂Q(F(δv))

∂δv
|δv=0

∂2Q(F(δv))
∂δ2v

|δv=0

, (8)

where δv is the additive change to αv. Computation of the Newton step is similar to Section 5.3.1.
Since the initial weights of new leaf nodes set in Line 4 are approximately optimum at the moment, it is

not necessary to perform weight correction in every iteration, which is relatively expensive. We found that
the strategy of “correcting the weights once every few new leaf nodes are added” works well. The interval
between fully-corrective updates is not crucial as long as it is not too large.

5.4 Tree-structured regularization

In our formulation, which minimizes the regularized lossQ(F) = L(·) +G(F), one can express preference
or prior knowledge about how the ideal forest should look via the regularization penalty term or regularizer
G(F). In this section, to simplify notation, we define regularizers over a single tree instead of the entire
forest. The regularizer over a forest can be obtained by adding the regularizers described here over all the
trees in the forest. Therefore, suppose that we are given a tree T with an additive model over leaf nodes:

hT (x) =
∑
v∈T

αv · gv(x) =
∑
v∈LT

αv · gv(x) (i.e., αv = 0 for v /∈ LT ),

where LT denotes the set of leaf nodes in T .
To consider useful regularizers defined on the given tree T , first recall that for any additive model over

leaf nodes only, there always exist equivalent models over all the nodes of the same tree that produce the
same output. More precisely, let A(v) denote the set of ancestor nodes of v and v itself. Then if for all

11



u ∈ LT ,
∑

v∈A(u) βv = αu, as illustrated in Figure 4, the additive model defined with {βv} is equivalent to
the given leaf-only model according to the underlying tree topology:∑

v∈T
βv · gv(x) ≡

∑
v∈LT

αv · gv(x) .

Our basic idea is that it is natural to give the same regularization penalty to all equivalent additive models
defined on the same tree topology. One way to define a regularizer that satisfies this condition is to choose
an additive model of some desirable properties as the unique representation for all the equivalent models
and define the regularization penalty based on this unique representation. This is the high-level strategy we
take.

More concretely, we consider the following form of regularization:

G(T ) =
∑
v∈T

r(ρv, θv) : ∀u ∈ LT .

 ∑
v∈A(u)

ρv = αu

 .

Here node v includes both internal and leaf nodes; the additive model defined by {ρv}v∈T serves as the
unique representation of the set of equivalent models; and r(·, ·) is a penalty function of a node weight and
node attributes; Each ρv is a function of given leaf weights {αu}u∈LT

, though the function may not be a
closed form. Since this formulation allows the entire tree including its topological structure to play a role
in regularization, we call regularizers in this form tree-structured regularizers. Below, we describe three
tree-structured regularizers using three distinct unique representations.

5.4.1 L2 regularization on leaf-only models

The first regularizer we introduce simply chooses the given leaf-only model as the unique representation
(namely, sets ρv = αv) and sets r(ρv, θv) = λρ2

v/2. This penalizes large weights (and therefore more
expressive/complex models) using the standard L2-regularization and leads to

G(T ) = λ
∑
v∈T

α2
v/2 = λ

∑
v∈LT

α2
v/2

where λ is a constant for controlling the strength of regularization. Among the equivalent models, the leaf-
only model is often (but not always1) the one with the smallest number of basis functions and therefore least
complex in that regard.

5.4.2 Minimum-penalty regularization

The regularizer above is simple to implement and works reasonably well, but it does not fully utilize infor-
mation available through the tree structure. A more dynamic approach would be to first define an arbitrary
regularizer for any given additive model, and then define the final regularization of a tree as the minimum
regularization value over all equivalent additive models. In other words, we choose the model that mini-
mizes the penalty as representative of the equivalent models, as it is the most preferable model according to
the defined penalty. We call the regularizers based on this approach min-penalty regularizers.

1 For example, consider a leaf-only model on a stump whose two sibling leaf nodes have the same weight α 6= 0. Its equivalent
model with the fewest basis functions (with nonzero coefficients) is the one whose weight is α on the root and zero on the two leaf
nodes.

12



The following is a min-penalty regularizer, in which bigger penalties are imposed on larger weights and
more complex basis functions associated with deeper nodes:

G(T ) = λ ·min
{βv}

∑
v∈T

γdvβ2
v/2 : ∀u ∈ LT .

 ∑
v∈A(u)

βv = αu

 . (9)

Here dv is the depth of node v, which is the distance from the root, and γ is a constant. A larger γ > 1
penalizes deeper nodes more severely, and we assume that γ ≥ 1. This new regularizer explicitly regularizes
the complexity of basis functions via the node depth.

Computation To derive an algorithm for computing this regularizer, first we introduce auxiliary variables
{β̄v}v∈T , recursively defined as: {

β̄oT = βoT
β̄v = βv + β̄p(v)

,

where oT denotes the root node of T , and p(v) denotes node v’s parent node. Then, the equivalence condition
∀u ∈ LT .

[∑
v∈A(u) βv = αu

]
is satisfied iff:

∀v ∈ LT .
[
β̄v = αv

]
. (10)

Using these auxiliary variables, (9) can be rewritten as:

G(T ) =λ ·min
{β̄v}

{
f({β̄v}) : ∀v ∈ LT .[ β̄v = αv]

}
(11)

where f({β̄v}) =
∑
v 6=oT

γdv(β̄v − β̄p(v))
2/2 + β̄2

oT
/2 . (12)

Setting f ’s partial derivatives to zero, we obtain that at the optimum, β̄v of the internal node (except for the
root) is the weighted average of neighbors β̄v:

∀v /∈ LT : β̄v =


β̄p(v)+

∑
p(w)=v γβ̄w

1+2γ v 6= oT∑
p(w)=v γβ̄w

1+2γ v = oT
, (13)

which leads to an iterative algorithm summarized in Algorithm 4. Convergence of this algorithm and some
more computational detail of this regularizer are shown in the Appendix.

5.4.3 Min-penalty regularization with sum-to-zero sibling constraints

We introduce another regularizer that is based on the same basic idea as above but is computationally simpler.
As a unique representation for equivalent models, we choose the model in which the sum of weights for
every sibling pair is zero, as illustrated in Figure 5. The intuition behind the sum-to-zero sibling constraints
is that less redundant models are preferable and that the models are the least redundant when branches at
every internal node lead to completely opposite actions, namely, ‘adding x to’ versus ‘subtracting x from’
the output value.

13



Algorithm 4:

for v ∈ T do β̄v,0←
{
αv v ∈ LT
0 v /∈ LT

for i = 1 to m do
for v ∈ LT do β̄v,i←αv

for v /∈ LT do β̄v,i←


β̄p(v),i−1+

∑
p(w)=v γβ̄w,i−1

1+2γ v 6= oT∑
p(w)=v γβ̄w,i−1

1+2γ v = oT

end
return {β̄v,m}

+1.3 -1.3

0.1

+0.2 -0.2

-1.2

1.6 1.2

0.1 -2.4

1.2

0.3 -0.1

Equivalent models

Unique representation 

with sum-to-zero siblings -0.1 -1.7

0.5

1.2 0.8

2.4 0.3

-1.5

0.7 0.3

Figure 5: Example of a Sum-to-zero Sibling Model

Using the auxiliary variables {β̄v} as defined above, it is straightforward to show that any set of equiv-
alent models has exactly one model that satisfies the sum-to-zero sibling constraints. This model, whose
coefficients are {βv}, can be obtained through the following recursive computation:

β̄v =

{
αv v ∈ LT∑

p(w)=v β̄w/2 v /∈ LT
. (14)

Formally, this regularizer can be written as

G(T ) = λ ·min
{βv}

∑
v∈T

γdvβ2
v/2 : ∀u ∈ LT .

 ∑
v∈A(u)

βv = αu

 ; ∀v /∈ LT .

 ∑
p(w)=v

βw = 0

 .

Since for a given leaf-only model, exactly one model satisfies the sibling constraints, that model trivially
minimizes the constrained objective. Therefore, this regularizer is also a min-penalty regularizer. Computa-
tional detail of this regularization method is described in the Appendix.

6 Experiments

This section reports empirical studies of RGF in comparison with GBDT and some other tree ensemble
methods including AdaBoost. For simplicity, we focus on square loss for regression and binary classification

14



Name #test #attribute Task
Houses 5,000 6 Target: log(median house price)

CT slices 24,564 384 Target: relative location of CT slices
Adult 16,281 14(168) Is income > $50K?
Letter 4,000 16 A-M vs N-Z

MNIST shrunk 10,000 49 Odd digits vs even digits
Musk2 4,598 166 Musk or not
Nursery 5,000 8(24) “Special priority” or not

Waveform2 3,000 40 Class2 vs. Class1&3

Figure 6: Real-world Datasets. We report the average of 3 runs, each of which uses 2K training data points. The
numbers in parentheses indicate the dimensionality after converting categorical attributes to indicator vectors.

tasks, although some results with exponential loss are also shown. All experimental results in this paper can
be reproduced using the RGF software available from http://riejohnson.com/rgf_download.
html.

6.1 Data

Our experiments used synthesized data and real-world data. The purpose of the synthesized data experiments
was to control the complexity of target functions (which are unknown in real-world applications) and observe
the empirical behavior of the methods.

6.1.1 Synthesized data generation

In the following data generation procedure, complexity of target functions is controlled by parameter q.

1. Generate 100 trees of q leaf nodes by randomly choosing a node to split and also randomly choosing
features and threshold values for split.

2. Assign weights, 0, 1, 2, · · · , q − 1, to the q leaf nodes of each of 100 trees generated.

3. Generate data points of 10 dimensions so that the components distribute uniformly over {0, 1, · · · , 99}.

4. Apply the tree ensemble generated above to each data point. The obtained value is an interim target
value.

5. To create binary classification problems, assign classes based on whether the interim target value is
greater than the median. That is, the final target value is set to +1 or -1 depending on whether the
interim target value is above or below the median.

6. To create regression problems, normalize the interim target value by subtracting the mean and dividing
by the standard deviation.

A larger q makes the target function more complex. The datasets were generated with q ∈ {64, 16, 4, 2}.
For each value of q, 10 datasets were synthesized with different random seeds. All the results are the average
over the 10 datasets for each data type.

15

http://riejohnson.com/rgf_download.html
http://riejohnson.com/rgf_download.html


6.1.2 Real-world datasets

Figure 6 summarizes the tested real-world datasets. They are from a variety of domains such as real estate,
health care, census records, and so on. They are mostly from the UCI Machine Learning Repository [10].

The Houses dataset2 is for the regression task. As suggested by the creators of the data, we predict the
logarithm of the median house price of the region, based on the median income, the median house age, total
rooms/population, total bedrooms/population, population/households, and households. The task associated
with the CT slice dataset is to predict the relative location of the CT scan images along the axial axis of
the human body, based on some image attributes. MNIST3 is for hand-written digit recognition containing
intensity of 28× 28 pixels. We reduced the dimensionality to 7× 7 by replacing each of 4× 4 regions with
the average intensity of the region. The Musk Version 2 dataset contains information of conformations of
molecules. The original task associated with this dataset is multi-instance learning. We use this dataset for
single-instance learning by regarding all the conformations independently.

Categorical attributes, contained in Adult and Nursery, were converted to binary indicator vectors whose
i-th component is 1 if the value of the attribute is the i-th category and other components are all zero.

The official test sets were used as test sets if any (Letter, MNIST, and Adult). For Nursery and Houses,
which are relatively large, 5K data points were held out as test sets, and training data points were randomly
drawn from the rest. For Musk2 and Waveform2, which are relatively small, in each run, 2K data points
were randomly chosen as training sets, and the rest were used as test sets. The CT slice dataset was divided
into the training and test sets based on whether the patent ID is odd or even. All the results are the average
of 3 runs, each of which used 2K training data points that were randomly chosen from the sets disjoint from
the test sets.

6.2 Parameter settings and some computational detail

6.2.1 Regularized greedy forest

RGF-L2 (RGF with the regularizer in Section 5.4.1) was tested with the regularization parameter λ set to
one of {1, 0.1, 0.01}, with a few exceptions in exponential loss experiments (described later). RGF with
min-penalty regularization in Sections 5.4.2 and 5.4.3 was tested with γ ∈ {2, 4} and λ ∈ { 1

γ ,
0.1
γ ,

0.01
γ }.

In all the configurations, the search for the best node split was limited to the most recently-created tree,
and weight optimization was done after every 100 leaf nodes. Weight optimization was done by coordinate
descent with step size set to 0.5. The number of iterations was 10 for square loss and 5 for exponential loss.
On the regression task, hF (x) was fitted to {(xi, yi − ȳ)}i, where ȳ =

∑n
i=1 yi/n, and the final output was

set to hF (x) + ȳ.

6.2.2 Gradient Boosted Decision Tree

Of special interests for this paper and for general applications is the decision tree base learner, for which C
is the class of J-leaf decision trees, with each node a decision rule of the form (3). We can represent this J-
leaf decision tree T by its leaf node as {gj}Jj=1, and gradient boosted decision tree (GBDT) in Algorithm 5,
as proposed in [14], is an adaption of the generic gradient boosting method in Algorithm 1. This is the

2 http://lib.stat.cmu.edu.
3 http://yann.lecun.com/exdb/mnist/

16



algorithm implemented in this work for comparison.

Algorithm 5: Gradient Boosted Decision Tree (GBDT) [14]
h0(x)←0
for k = 1 to K do

Ỹk←− ∂L(h, Y )/∂h|h=h(X)

Build a J-leaf decision tree Tk←A(X, Ỹk) with leaf-nodes {gk,j}Jj=1

for j = 1 to J do βk,j← arg minβ∈R L(hk−1(X) + β · gk,j(X), Y )

hk(x)←hk−1(x) + s
∑J

j=1 βk,j · gk,j(x) // s is a shrinkage parameter
end
return h(x) = hK(x)

With square loss, βk,j coincides with the leaf weight computed by the tree builder, which does not need to

be recomputed. With exponential loss, approximation by the Newton step βk,j←
∑

gk,j(x)=1 yi exp(−hk−1(xi)yi)∑
gk,j(x)=1 exp(−hk−1(xi)yi)

was performed. Following [14], the maximum number of leaf nodes of each regression tree (‘tree size’ in
short) was parameterized, and the nodes were split in the best-first manner. For tree size, six values were
tested: {2, 4, 8, 12, 16, 64}. For the shrinkage parameter s, seven values {1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001}
were tested.

6.2.3 Common settings

Whenever applicable, node split was prohibited if it would cause a leaf node to have training data points
fewer than 10, as is commonly done.

In the computation of the optimum δk (7) for exponential loss, the following was done for numerical
stability:

µ←max

(
−500,min

(
500,

1

n

n∑
i=1

yihF (xi)

))
, δ̂k←

∑
guk (x)=1 yie

−yihF (xi)+µ − nλα · eµ∑
guk (x)=1 e

−yihF (xi)+µ + nλ · eµ
.

Similar protection was done in the weight correction procedure and for GBDT with exponential loss.

6.3 Comparison with GBDT

Due to our interest in sparse models, we plot performance against the number of leaf nodes, which is equal
to the number of basis functions of the model. As the number of tested configurations for GBDT is too large
(42) to fit in one graph, only a few best-performing configurations (measured by the peak performances) are
shown for GBDT. In the legends, the first number following “gb” is the tree size and the second number is
the shrinkage parameter, e.g., “gb8:s=0.1” means GBDT with 8-leaf trees with shrinkage parameter 0.1.

The first results (Figure 7) are on the datasets synthesized from 64-leaf trees and 16-leaf trees for regres-
sion. The target functions of these datasets are relatively complex. RGF-L2 (RGF with L2 regularization on
leaf-only models; blue solid lines) achieves smaller error than GBDT (black dotted lines) with all the tested
values of regularization parameter λ.

The next results are on the datasets synthesized from 4- and 2-leaf trees (stumps) in Figure 8, whose
target functions are less complex than those of the previous figure. RGF-L2 (blue solid lines) achieves
smaller error than GBDT when λ is appropriate, but the merit somewhat diminishes on the stump datasets.
RGF-L2 seems to be particularly effective for relatively complex target functions, on which regularization
can help to avoid overfitting.

17



0.25

0.3

0.35

0.4

0.45

0.5

0 5000 10000

sq
u
a
re
 e
rr
o
r

#leaf

10 datasets synthesized 

w/64-leaf trees

#train=2K, square loss

rgf:lam=1

rgf:lam=0.1

rgf:lam=0.01

gb8:s=0.1

gb12:s=0.1

gb4:s=0.1
0.15

0.2

0.25

0.3

0.35

0 5000 10000

sq
u
a
re
 e
rr
o
r

#leaf

10 datasets synthesized 

w/16-leaf trees

#train=2K, square loss

rgf:lam=1

rgf:lam=0.1

rgf:lam=0.01

gb4:s=0.1

gb8:s=0.1

gb12:s=0.1

Figure 7: Performance Comparison on Synthetic Data (regression with complex targets)

On the datasets in Figure 8, RGF with the min-penalty regularization (green lines with long dashes)
is proven to be effective. Recall that the min-penalty regularizer uses the weights βv of the equivalent
model over all nodes as in

∑
v λγ

dvβ2
v/2. The configurations shown here set γ = 4 or 2 and λ = 0.01/γ,

which encourages smaller trees, and outperform not only GBDT but also RGF-L2. The two min-penalty
regularizers (with and without the sibling constraint) achieved similar performance on these datasets and
only the results with the sibling constraints are shown in the figure. Similar results were obtained on the
synthesized classification datasets (Figure 9).

In Figure 10, we show regression and binary classification results on the real-world datasets. RGF-L2

(blue solid lines) shows merit over GBDT in terms of higher accuracy or sparser models on all but the Adult
dataset. The min-penalty regularization with γ > 1 was found to be effective on Musk2 but not on the other
datasets. Our conjecture based on the synthesized data experiments is that the unknown target functions
underlying these real-world datasets are relatively complex except for Musk2.

Finally, Figure 11 shows the results of RGF and GBDT with exponential loss (“xrgf” and “xgb”). The
square loss results and AdaBoost performances (“ada”) are also shown for comparison. The base learners
for AdaBoost were regression trees generated in the best-first manner with tree size in {2, 4, 8, 12, 16, 64} as
in the GBDT experiments. For AdaBoost, the best-performing configuration among these six configurations
is shown. It appears that exponential loss generally requires weaker regularization than square loss. The
effective range of regularization parameters are smaller; e.g., λ = 0.01 with square loss vs. λ = 1e − 20
with exponential loss on MNIST. Consequently, GBDT’s lack of explicit regularization is less harmful with
exponential loss, and on some datasets GBDT and RGF (and AdaBoost) achieved similar performance.
However, RGF with either square loss or exponential loss generally produced more accurate/sparse models
than GBDT or AdaBoost. On some datasets, RGF with exponential loss performs better than RGF with
square loss while it does not on other datasets. There may be other regularization methods that are more
suitable to exponential loss, but we did not explore this direction in this paper.

GBDT with post processing of fully-corrective updates A two-stage approach was proposed in [16]
that first performs GBDT to learn basis functions and then fits their weights with L1 penalty in the post-
processing stage. Note that by contrast RGF generates basis functions and optimizes their weights in an
interleaving manner so that fully-corrected weights can influence generation of the next basis functions.
Figure 12 shows representative results of their two-stage approach. As is well known, L1 regularization has
“feature selection” effects, assigning zero weights to more and more features with stronger regularization.

18



0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 5000 10000

sq
u
a
re
 e
rr
o
r

#leaf

10 datasets synthesized 

w/4-leaf trees

#train=2K, square loss

rgf:lam=1

rgf:lam=0.1

rgf:lam=0.01

rgf0.01:4

rgf0.01:2

gb4:s=0.1

gb4:s=0.05

gb4:s=0.5

0.0001

0.001

0.01

0.1

1

0 500 1000 1500 2000

#leaf

10 datasets synthesized 

w/stumps

#train=2K, square loss

rgf:lam=1

rgf:lam=0.1

rgf:lam=0.01

rgf0.01:4

rgf0.01:2

gb2:s=1

gb2:s=0.5

gb2:s=0.1

Figure 8: Performance Comparison on Synthetic Data (regression with simple targets)

75

76

77

78

79

0 5000 10000

a
cc
u
ra
cy

#leaf

10 datasets synthesized 

w/64-leaf trees

#train=2K

square loss

rgf:lam=1

rgf:lam=0.1

rgf:lam=0.01

gb12:s=0.05

gb16:s=0.05

gb4:s=0.05

90

91

92

93

94

95

0 1000 2000

a
cc
u
ra
cy

#leaf

10 datasets synthesized 

w/stumps

#train=2K

square loss

rgf:lam=1
rgf:lam=0.1
rgf:lam=0.01
rgf1:4
rgf1:2
gb2:s=0.1
gb2:s=0.05
gb2:s=0.5

85

86

87

88

89

0 5000 10000

a
cc
u
ra
cy

#leaf

10 datasets synthesized 

w/4-leaf trees

#train=2K

square loss

rgf:lam=1
rgf:lam=0.1
rgf:lam=0.01
rgf1:4
rgf1:2
gb4:s=0.05
gb4:s=0.1
gb2:s=0.1

79

80

81

82

83

84

0 5000 10000

a
cc
u
ra
cy

#leaf

10 datasets synthesized 

w/16-leaf trees

#train=2K

square loss

rgf:lam=1

rgf:lam=0.1

rgf:lam=0.01

gb4:s=0.05

gb4:s=0.1

gb8:s=0.05

Figure 9: : Performance Comparison on Synthetic Data (classification with complex targets (left) and
simple targets (right))

19



83

83.5

84

84.5

85

85.5

86

0 500 1000

a
cc

u
ra

cy

#leaf

Adult

#train=2K, 3 runs

square loss

rgf:lam=1

rgf:lam=0.1

gb8:s=0.1

gb8:s=0.05 89

89.5

90

90.5

91

91.5

92

92.5

0 5000 10000

a
cc

u
ra

cy

#leaf

Letter A-M vs �-Z

#train=2K, 3 runs

square loss

rgf:lam=0.1

rgf:lam=0.01

gb16:s=0.1

gb12:s=0.1

94.5

95

95.5

a
cc

u
ra

cy

M�IST 7x7 odd vs even

#train=2K, 3 runs

square loss

50

60

70

80

90

0 2000 4000

sq
u

a
re

 e
rr

o
r

#leaf

CT slices

#train=2K, 3 runs

square loss

rgf:lam=1

rgf:lam=0.1

gb12:s=0.1

gb12:s=0.05 0.1

0.12

0.14

0.16

0.18

0.2

0 500 1000 1500

sq
u

a
re

 e
rr

o
r

#leaf

California houses

#train=2K, 3 runs

square loss

rgf:lam=1

rgf:lam=0.1

gb12:s=0.05

gb8:s=0.05

97.5

98

98.5

a
cc

u
ra

cy

Musk2

#train=2K, 3 runs

Square loss

88

88.5

89

89.5

90

90.5

91

0 2000 4000

a
cc

u
ra

cy

#leaf

Waveform2

class2 vs others

#train=2K, 3 runs

square loss

rgf:lam=1

rgf:lam=0.1

gb12:s=0.05

gb8:s=0.1

92

92.5

93

93.5

94

0 5000 10000

a
cc

u
ra

cy

#leaf

rgf:lam=0.1

rgf:lam=0.01

gb8:s=0.1

gb12:s=0.05

97.5

98

98.5

99

0 1000 2000

a
cc

u
ra

cy

#leaf

�ursery

spec_prio vs others

#train=2K, 3 runs

square loss

rgf:lam=1

rgf:lam=0.1

rgf:lam=0.01

gb8:s=0.1

gb8:s=0.05

95.5

96

96.5

97

97.5

0 2000 4000

a
cc

u
ra

cy

#leaf

rgf:lam=0.1

rgf:lam=0.01

rgf0.01:4

rgf0.01:2

gb2:s=0.5

gb4:s=0.5

Figure 10: Performance Comparison on Real Data (square loss). Average of 3 runs. Each run used 2K training
data points.

20



a
cc

u
ra

cy
a

cc
u

ra
cy

75

76

77

78

79

0 5000 10000

#leaf

64-leaf synth

xrgf:lam=0.01

rgf:lam=1
79

80

81

82

83

84

0 5000 10000

#leaf

16-leaf synth

xrgf:lam=0.01

rgf:lam=1
85

86

87

88

89

90

0 5000 10000

#leaf

4-leaf synth

xrgf0.01:4

xrgf:lam=0.01

rgf:lam=1

90

91

92

93

94

95

96

97

0 1000 2000

#leaf

2-leaf synth

xrgf0.01:4

xrgf:lam=0.01

rgf:lam=1
83

83.5

84

84.5

85

85.5

86

0 500 1000

#leaf

Adult

rgf:lam=1

xrgf:lam=1

100

�ursery

89

89.5

90

90.5

91

91.5

92

92.5

0 5000 10000

#leaf

Letter

rgf:lam=0.1

xrgf:1e-10

98

98.5 Musk295.5 M�IST 7x7 

a
cc

u
ra

cy
a

cc
u

ra
cy

xgb best

gb best

adaboost best

88

88.5

89

89.5

90

90.5

91

0 2000 4000

#leaf

Waveform2

rgf:lam=1

xrgf:lam=1

98

98.5

99

99.5

0 1000 2000

#leaf

�ursery

xrgf:1e-10

rgf:lam=0.01

95.5

96

96.5

97

97.5

98

0 2000 4000

#leaf

rgf0.01:2

xrgf:1e-20

rgf:lam=0.1
93

93.5

94

94.5

95

0 5000 10000

#leaf

rgf:lam=0.01

xrgf:1e-20

Figure 11: Performance Comparison on Synthetic Data and Real Data (exponential loss). Average of 10
(synthetic) or 3 (real) runs. Each run used 2K training data points.

21



gb

gb-L1

89

90

91

92

0 5000 10000

#leaf | #nonzero

Letter

95

96

97

98

99

0 2000 4000

#leaf | #nonzero

�ursery

91

92

93

94

0 5000 10000

a
cc

u
ra

cy

#leaf | #nonzero

M�IST

0.11

0.12

0.13

0.14

0.15

0 1000 2000

#leaf | #nonzero

California 

houses

0.1

0.2

0.3

0.4

0.5

0 5000 10000

sq
u

a
re

 e
rr

o
r

#leaf | #nonzero

16-leaf synth

Figure 12: GBDT with L1 regularized post-processing.

After performing GBDT until the maximum number of leaf nodes in the graphs (e.g., 10000 on MNIST) was
obtained, we used the R package glmnet [15] to compute the entire L1 path in which the regularization
parameter goes down gradually and thus more and more basis functions obtain nonzero weights. The solid
lines plot the performance of the entire L1 path in relation to the number of nonzero weights. The dotted
lines are GBDT without post-processing for comparison. In both, GBDT was performed with the best-
performing parameters shown in Figures 7 and 10. The graphs show that the L1 post processing makes
the models sparser so that the performance peak is obtained with fewer basis functions. But it does not
necessarily improve the accuracy of the models; rather, accuracy is degraded in some cases. We view that
the results support RGF’s interleaving approach.

Discussion Using synthesized datasets, we have shown that RGF can perform well on the datasets whose
target functions range from simple to complex. In particular, RGF with L2 regularization on leaf-only
models is effective when underlying target functions are composed of relatively complex basis functions.
The min-penalty regularization with γ > 1, which encourages simpler basis functions, is effective when
underlying target functions are composed of relatively simple basis functions. We have also shown that
there are a number of real-world datasets on which RGF can produce sparser and more accurate models than
GBDT. On the Adult, Houses, and 2-leaf classification datasets, RGF appeared to have limited success in
that its peak performance rivaled those of GBDT but provided no significant improvement. Interestingly,
on these datasets performances appear to converge with a smaller number of basis functions (leaf nodes)
than other datasets. The indication is that RGF is particularly useful when a relatively large number of
basis functions is required to model the underlying target functions, as this is one of the situations when
RGF’s fully-corrective update and explicit regularization can make real difference. Overall, these results are
consistent with our expectation.

6.4 Comparison with other tree ensemble methods

In the previous section, we studied RGF’s performance in comparison with GBDT. This section reports
empirical comparison with other types of tree ensemble methods. As before, all the results are the average
of either 10 or 3 runs (10 on the synthesized data and 3 on the others), each of which used 2K training data
points.

6.4.1 Random forests

Random forests generate K trees from K random inputs generated by random draw of training samples
and features. We used the R package randomForest [7] and performed random forest training with the

22



sq
u

a
re

 e
rr

o
r

a
cc

u
ra

cy
sq

u
a
re

 e
rr

o
r

70

72

74

76

78

80

1000 10000 100000

#leaf

64-leaf synth

70

75

80

85

1000 10000 100000

#leaf

16-leaf synth

75

80

85

90

1000 10000 100000

#leaf

4-leaf synth

85

87

89

91

93

95

100 10000 1000000

#leaf

2-leaf synth

86 Adult 94 Letter 96 M�IST 98 Musk

random forests best

rgf:lam=1

rgf:lam=0.1

rgf:lam=0.0150

60

70

80

90

100 10000 1000000

#leaf

CTslices

0.1

0.12

0.14

0.16

0.18

100 10000 1000000

#leaf

California

houses

0.2

0.3

0.4

0.5

0.6

0.7

1000 10000100000

#leaf

64-leaf synth

0.1

0.2

0.3

0.4

0.5

0.6

1000 10000100000

#leaf

16-leaf synth

0

0.1

0.2

0.3

0.4

1000 10000100000

#leaf

4-leaf synth

0

0.1

0.2

0.3

0.4

0.5

100 10000 1000000

#leaf

2-leaf synth
a
cc

u
ra

cy
a
cc

u
ra

cy

82

83

84

85

100 10000 1000000

#leaf

86

88

90

92

1000 10000 100000

#leaf

88

90

92

94

1000 10000 100000

#leaf

95

96

97

1000 10000 100000

#leaf

95

96

97

98

99

100 10000 1000000

#leaf

�ursery

88

88.5

89

89.5

90

90.5

91

1000 10000100000

#leaf

Waveform

random forests best

rgf:lam=1

rgf:lam=0.1

rgf:lam=0.01

Figure 13: Comparison with Random forests. Average of 10 or 3 runs. Each run used 2K training data points.

23



number of randomly-drawn features k in {1, d4 ,
d
2 ,

3d
4 , default}, where d is the feature dimensionality and

the ‘default’ is the value recommended by the system. For each of these five configurations, the number of
trees was varied from 1 to 10000. In Figure 13, we show the results of the best (at the peak) random forest
configuration among the five configurations in black lines. Since we are interested in compact models, we
plot performance in relation to the number of leaf nodes of the forests (in the log-scale). The blue lines are
RGF-L2 with square error. On most of the datasets, RGF achieves higher accuracy (or lower error) with
much fewer leaf nodes, compared with the best-performing random forests configuration.

6.4.2 Bayesian Additive Regression Trees (BART)

Bayesian Additive Regression Trees (BART) [9] is a Bayesian approach to tree ensemble learning. We
used the R package BayesTree [8] for the experiments. It is interesting to see how RGF empirically
compares to BART, as they share some high-level strategies such as explicit regularization and non-black-
box approaches to tree learners. BART starts with m trees each of which consists of the root node only, and
in each iteration, the m trees are either grown or pruned. This process is viewed as generating a sequence of
additive models of m trees, which is converging to the posterior distribution on the “true” model. Prediction
is done by taking the average of the predictions ofK models fromK iterations after some number of burn-in
iterations. Therefore, the final model consists of m×K trees.

In addition to m and K above, BART has five parameters to control regularization. We did not at-
tempt to tune all the parameters as [9] reports that the default/recommended values work well, and as BART
training is relatively time-consuming (roughly 100 times longer than GBDT according to [9]). After prelim-
inary experiments, we found that performance can often be improved by appropriately choosing the weight
shrinkage parameter k from {1, 2, 3}while the others fixed to the default values. Below we report the results
of the best BART configuration (at its peak) among these three configurations.

Figure 14 shows performance in relation to the number of trees in the final model (in the log-scale),
which is m × K for BART where m = 200 (default) and K (the number of the additive models to be
averaged) varies from 1 to 1000. Unlike previous figures, the model size is represented by the number of
trees instead of leaf nodes since the BART package does not provide the number of leaf nodes. The black
lines represent the best BART configuration, and the blue solid lines are RGF-L2 with square error. The CT
slices results are not shown as BART could not complete the training due to memory shortage. The BART
performance is highest with 200,000 trees (the tested maximum) and relatively low with a small number
of trees. On most of the tested datasets, at least one of the RGF configurations exceeds the BART’s best
performance with 100 to 1000 trees.

Although BART and RGF share some high-level strategies, an interesting difference is that BART does
not attempt to keep models compact. As a result, in our experiments, RGF required roughly 100 times fewer
trees to achieve performance either better or comparable accuracy compared with BART. This means that
prediction using the models obtained by RGF could be 100 times faster than prediction using the models
obtained by BART, which may be significant in some applications.

6.5 Running time

We have shown that RGF often achieves higher accuracy than GBDT, but this is done at the cost of ad-
ditional computational complexity mainly for fully-corrective weight updates. In this section we analyze
running time in terms of the following factors: `, the number of leaf nodes generated during training; d,
dimensionality of the original input space; n, the number of training data points; c, how many times the
fully-corrective weight optimization is done; and z, the number of leaf nodes in one tree, or tree size. In

24



86 Adult 96
M�IST

sq
u

a
re

 e
rr

o
r

a
cc

u
ra

cy

sq
u

a
re

 e
rr

o
r

bart best

rgf:lam=1

rgf:lam=0.1

rgf:lam=0.01

95 Letter

79

80

81

82

83

84

100 1000 10000100000

#tree

16-leaf synth

75

76

77

78

79

80

100 1000 10000100000

#tree

64-leaf synth

99 Musk

87

88

89

90

91

100 1000 10000 100000

#tree

4-leaf synth

xrgf0.01:4

93

94

95

96

100 1000 10000100000

#tree

2-leaf synth

xrgf0.01:4

0.0001

0.001

0.01

0.1

100 1000 10000100000

#tree

2-leaf synth

rgf0.01:4

0.25

0.3

0.35

0.4

0.45

100 1000 10000100000

#tree

64-leaf synth

0.15

0.2

0.25

0.3

0.35

100 1000 10000100000

#tree

16-leaf synth

0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

100 1000 10000100000

#tree

4-leaf synth

0.11

0.12

0.13

0.14

0.15

10 1000 100000

#tree

California

houses

84.5

85

85.5

100 1000 10000100000

#tree

88

90

92

94

100 1000 10000100000

#tree

M�IST

98

98.5

99

99.5

100

100 1000 10000100000

#tree

�ursery

xrgf:1e-10

a
cc

u
ra

cy

bart best

rgf:lam=1

rgf:lam=0.1

rgf:lam=0.01

a
cc

u
ra

cy

80

85

90

100 1000 10000100000

#tree

89

89.5

90

90.5

91

100 1000 10000100000

#tree

Waveform

94

95

96

97

98

100 1000 10000100000

#tree

Figure 14: Comparison with BART. Average of 10 or 3 runs. Each run used 2K training data points.

25



data RGF GBDT ratio data RGF GBDT ratio
Nursery 0.60 0.36 1.7 Waveform 8.36 1.41 5.9
Houses 0.92 0.41 2.2 16-leaf(R) 10.7 3.70 2.9
Adult 0.60 0.37 1.6 MNIST 7x7 23.6 8.75 3.6
Letter 5.43 1.40 3.9 Musk 28.7 11.2 2.6

16-leaf(C) 6.40 1.36 4.7 CT slices 50.2 22.6 2.2

Figure 15: Average training time in seconds. 2000 data points. RGF: average over 3 configurations of
RGF-L2. GBDT: average over 9 best-performing configurations.

RGF, tree size depends on the characteristics of data and strength of regularization. Although tree size can
differ from tree to tree, for simplicity we treat it as one quantity, which should be approximated by the
average tree size in applications.

In typical tree ensemble learning implementation, for efficiency, the data points are sorted according to
feature values at the beginning of training. The following analysis assumes that this “pre-sorting” has been
done. Pre-sorting runs in O(nd log(n)), but its actual running time seems practically negligible compared
with the other part of training even when n is as large as 100,000.

Recall that RGF training consists of two major parts: one grows the forest, and the other optimizes/corrects
the weights of leaf nodes. As in our experiments, assume that only the most recently-grown tree is searched
during forest building and weight optimization is done by coordinate descent with a fixed number of itera-
tions. First, we consider running time excluding the processing for regularization as it varies with the type
of regularizer. The part to grow the forest runs inO(nd`), same as GBDT. Weight optimization takes place c
times, and each time we have an optimization problem of n data points each of which has at most `z nonzero
entries. Therefore, the running time for optimization, excluding regularization, is O(n`cz ) using coordinate
descent implemented with sparse matrix representation.

During forest building, the partial derivatives and the reduction of regularization penalty are referred to
O(nd`) times. During weight optimization, the partial derivatives of the penalty are required O(`c) times.
With RGF-L2, computation of these quantities with respect to one leaf weight is contained in the node of
interest and runs in O(1). The extra running time for that is practically negligible. Computation of min-
penalty regularizers involves O(z) nodes; however, with efficient implementation that stores and reuses
invariant quantities, extra running time for min-penalty regularizers during forest building can be reduced
to O(nd`) + O(`z2) (instead of O(nd`z), which could be large with a large amount of training data). The
extra running time during weight optimization is O(`cz), and the constant part can be substantially reduced
by efficient implementation. Details are shown in the Appendix.

Empirical running time In Figure 15, we show the elapsed time of RGF on the tested datasets in
comparison with GBDT. The RGF column shows the average over three RGF-L2 configurations with
λ ∈ {1, 0.1, 0.01}. The GBDT column shows the average over the best-performing configurations, which
are 9 combinations of tree size and the shrinkage parameter that achieved the best performance on at least
one of the 8 synthesized data types or the 8 real-world datasets on average. For both, the loss function was
square loss; ` was set to the maximum value of the x-axis in Figure 7–10; and n was set to 2000 as before.
RGF training mostly took 2–5 times longer than GBDT, as shown in the right-most column. But even so,
RGF training runs conveniently fast in less than a minute in most of these settings. Even if training data size
is increased by 10 times, it will mostly take less than 5 minutes as RGF training time is linear in n.

Figure 16 plots running time in relation to tree size z which is approximated by the average tree size. The

26



0

5

10

15

20

25

30

0 10 20 30

tr
a
in
in
g
 t
im
e 
(s
ec
o
n
d
s)

tree size (average)

4-leaf synth, #attribute=10
L2:λ=1,0.1,0.01
L2:λ>1
min-penalty reg.
min-p. reg. w/sib

0

10

20

30

40

50

60

70

80

2 4 6 8 10 12

tr
a
in
in
g
 t
im
e 
(s
ec
o
n
d
s)

tree size (average)

CTslices, #attribute=384

L2:λ=1,0.1,0.01

L2:λ>1

min-penalty reg.

min-p. reg. w/sib

Figure 16: Training Time of RGF. The circles and triangles are RGF with min-penalty regularizers with and
without the zero-to-sum sibling constraints, respectively.

points X’s are RGF-L2 with λ set to practically useful values {1, 0.1, 0.01}. The points +’s are RGF-L2 with
much larger λ, which would not be used in practical applications but are shown for running time analysis.
The triangles and circles are with min-penalty regularizers with λ ∈ { 1

γ ,
0.1
γ ,

0.01
γ } with γ ∈ {2, 4}. On each

dataset, n, `, and cwere fixed to the same values as in Figure 15. On the 4-leaf synthesized dataset, on which
d is relatively small, weight optimization inO(n`cz ) dominates over forest building inO(nd`), so the running
time is nearly inversely proportional to z. The additional running time for min-penalty regularization seems
negligible with small tree sizes z and more prominent with larger z. The running time with min-penalty
regularization tends to be longer than RGF-L2 with practical values of λ, but that is not only because of
additional computation but also because setting γ > 1 penalizes deeper nodes and makes tree size z smaller.
By contrast, on CT slices, whose d is relatively large, forest building in O(nd`) dominates over weight
optimization in O(n`cz ), so the influence of the tree size z on RGF-L2 is small.

As seen above, training could take longer with min-penalty regularizers. To save training time, rather
than mechanically training combinations of λ and γ, first one should try RGF-L2 and find a good value for
λ (based on validation data) and then try min-penalty regularizers with λ no greater than the found value, as
γ > 1 has an effect of further strengthening regularization.

7 Conclusion

This paper introduced a new method that learns a nonlinear function by using an additive model over non-
linear decision rules. Instead of the traditional boosted decision tree approach, the proposed method directly
works with the underlying forest structure. The resulting method, which we refer to as regularized greedy
forest (RGF), integrates two ideas: one is to include tree-structured regularization into the learning formu-
lation; and the other is to employ the fully-corrective regularized greedy algorithm. Since in this approach
we are able to take advantage of the special structure of the decision forest, the resulting learning method
is more effective and principled than boosted decision trees. Specially, the new method can achieve smaller
sized forests with more accurate predictions, especially for more complex nonlinear functions that require
stronger regularization. Our empirical studies also demonstrated these advantages.

27



References

[1] Francis Bach. Exploring large feature spaces with hierarchical multiple kernel learning. In NIPS’
2008, 2008.

[2] Francis Bach. High-dimensional non-linear variable selection through hierarchical kernel learning.
Technical Report 00413473, HAL, 2009.

[3] Richard Baraniuk, Volkan Cevher, Marco F. Duarte, and Chinmay Hegde. Model based compressive
sensing. IEEE Transactions on Information Theory, 56:1982–2001, 2010.

[4] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and Regression Trees.
Wadsworth Advanced Books and Software, Belmont, CA, 1984.

[5] Leo Breiman. Bagging predictors. Machine Learning, 24:123–140, August 1996.

[6] Leo Breiman. Random forests. Machine Learning, 45:5–32, 2001.

[7] Leo Brieman, Adele Cutler, Andy Liaw, and Matthew Wiener. Package ‘randomForest’, 2010.

[8] Hugh Chipman and Robert mcCulloch. Package ‘BayesTree’, 2010.

[9] Hugh A. Chipman, Edward I. George, and Robert E. McCulloch. BART: Bayesian additive regression
trees. The Annals of Applied Statistics, 4(1):266–298, 2010.

[10] A. Frank and A. Asuncion. UCI machine learning repository [http://archive.ics.uci.edu/ml], 2010.
University of California, Irvine, School of Information and Computer Sciences.

[11] Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learning and an application
to boosting. J. Comput. Syst. Sci., 55(1):119–139, 1997.

[12] Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. An efficient boosting algorithm for
combining preferences. JMLR, 4:933–969, 2003.

[13] Yoav Freund and Llew Mason. The alternating decision tree learning algorithm. In ICML’ 99, pages
124–133, 1999.

[14] Jerome Friedman. Greedy function approximation: A gradient boosting machine. The Annals of
Statistics, 29, 2001.

[15] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Package ‘glmnet’, 2011.

[16] Jerome H. Friedman and Bogdan E. Popescu. Importance sampled learning ensembles. Technical
report, Tech Report, 2003.

[17] R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal regression. In
B. Schölkopf A. Smola, P. Bartlett and D. Schuurmans, editors, Advances in Large Margin Classifiers,
pages 115–132. MIT Press, 2000.

[18] Junzhou Huang, Tong Zhang, and Dimitris Metaxas. Learning with structured sparsity. JMLR, 2011.
to appear.

28



[19] L. Jacob, G. Obozinski, and J. Vert. Group lasso with overlap and graph lasso. In Proceedings of
ICML, 2009.

[20] R. Jenatton, J.-Y. Audibert, and F. Bach. Structured variable selection with sparsity-inducing norms.
Technical report, Tech Report: arXiv:0904, 2009.

[21] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[22] Robert E. Schapire. The boosting approach to machine learning: An overview. Nonlinear Estimation
and Classification, 2003.

[23] Shai Shalev-Shwartz, Nathan Srebro, and Tong Zhang. Trading accuracy for sparsity in optimization
problems with sparsity constraints. Siam Journal on Optimization, 20:2807–2832, 2010.

[24] M. Warmuth, J. Liao, and G. Ratsch. Totally corrective boosting algorithms that maximize the margin.
In Proceedings of the 23rd international conference on Machine learning, 2006.

[25] Tong Zhang and Bin Yu. Boosting with early stopping: Convergence and consistency. The Annals of
Statistics, 33:1538–1579, 2005.

29



A Appendix

A.1 Convergence of Algorithm 4

To show that Algorithm 4 converges, let us express the algorithm using matrix multiplication as follows. Let
J be the number of internal nodes, and define a matrix A ∈ RJ×J and a column vector b ∈ RJ so that:

A[v, w] =


1

1+2γ w = p(v)
γ

1+2γ p(w) = v

0 otherwise
, b[v] =

∑
p(w)=v,w∈LT

γαw
1 + 2γ

Define B ∈ R(J+1)×(J+1) and β̄ ∈ Rn+1 so that:

B =

[
A b
0 1

]
, β̄ =


0
:
0
1


Then since we have:

Bm =

[
Am

∑m−1
i=0 Aib

0 1

]
,

m iterations of Algorithm 4 is equivalent to:

β̄v,m←

{
αv v ∈ LT(
Bmβ̄

)
[v] =

(∑m−1
i=0 Aib

)
[v] v /∈ LT

It is well known that for any square matrix Z, if ‖Z‖p < 1 for some p ≥ 1 then I − Z is invertible and
(I− Z)−1 =

∑∞
k=0 Zk. Therefore, it suffices to show that ‖A‖p < 1 for some p ≥ 1.

First, consider the case that γ = 1. In this case, A is symmetric and column v (and row v) has |N(v)|
non-zero entries, where N(v) denote the set of the internal nodes adjacent to v, and all the non-zero entries
are 1/3.

Using the fact that |N(v)| ≤ 3 for v 6= oT and |N(oT )| ≤ 2, for any x ∈ RJ , we have:

‖x‖22 − ‖Ax‖22 =
∑
j

x[j]2 − 1

9

∑
j

 ∑
k∈N(j)

x[k]

2

>
2

3

∑
j

x[j]2 − 1

9

∑
j

∑
k,`∈N(j),k<`

2x[k] · x[`]

>
1

9

∑
j

∑
k,`∈N(j),k<`

(x[k]− x[`])2 ≥ 0

Therefore, ‖A‖2 < 1.
Next suppose that γ > 1. Then we have:

‖A‖1 = max
j

J∑
i=1

|A[i, j]| ≤ 2 · 1

1 + 2γ
+

γ

1 + 2γ
< 1

Hence, Algorithm 4 converges with γ ≥ 1.
Another way to look at this is that (10) and (13) can be expressed using the matrix notation above as:

β̄ = Aβ̄ + b. As shown above, I − A is invertible, and therefore {β̄v} with desired properties can be
obtained by β̄ = (I−A)−1b. Algorithm 4 computes it iteratively.

Our implementation used its slight variant (Algorithm 6) as it converges faster.

30



Algorithm 6:

forall the v ∈ T do β̄v←
{
αv v ∈ LT
0 v /∈ LT

for i = 1 to m do

for v /∈ LT in some fixed order do β̄v←


β̄p(v)+

∑
p(w)=v γβ̄w

1+2γ v 6= oT∑
p(w)=v γβ̄w

1+2γ v = oT

end

A.2 Computational detail of the min-penalty regularization in Section 5.4.2

To optimize weights according to (8), we need to obtain the derivatives of the regularization penalty,
∂G(T (δu))

∂δu |δu=0
and ∂2G(T (δu))

∂δ2u |δu=0
, where δu is the additive change to αu, the weight of a leaf node u,

and T is the tree to which node u belongs. Let {ρ̄v} = arg min{β̄v}
{
f({β̄v}) : ∀v ∈ LT .[β̄v = αv]

}
so

that G(T ) = λ · f({ρ̄v}), where f and G(T ) are defined in terms of auxiliary variables as in (11) and (12).
From the derivation in the previous section, we know that ρ̄w is linear in leaf weights {αv}. In particular,

ρ̄w for an internal node w can be written in the form of ρ̄w =
∑

v∈LT
cw,vαv with coefficients cw,v that are

independent of leaf weights and only depend on the tree topology. Also considering ρ̄v = αv for v ∈ LT ,
we have:

∂ρ̄w
∂αu

=


cw,u w /∈ LT
1 w = u
0 w 6= u & w ∈ LT

.

cw,u can be obtained by Algorithm 4 (or 6) with input of: αu = 1; αt = 0 for t 6= u; and the topological
structure of T . Also using ∂2ρ̄w

∂α2
v

= 0, it is straightforward to derive from the definition of f in (12) that:

∂G(T (δu))

∂δu |δu=0
= λ

∑
w∈T

γdwρw
∂ρw
∂αu

,
∂2G(T (δu))

∂δ2
u |δu=0

= λ
∑
w∈T

γdw
(
∂ρw
∂αu

)2

, (15)

where ρw = ρ̄w − ρ̄p(w) if w 6= oT ; ρ̄w otherwise. (16)

The optimum change to the leaf weight αu can be computed using these quantities. Loss reduction caused
by node split can be similarly estimated.

For efficient implementation The key to efficient implementation is to make use of the fact that in the
course of training certain quantities are locally invariant, by storing and reusing the invariant quantities.
First, since the iterative algorithm is relatively complex, it should be executed as infrequently as possible.
As noted above, ρ̄w’s partial derivatives only depend on the topological structure of the tree, so they need to
be computed only when the tree topology changes. When δv is added to αv, ρ̄w should be updated through
ρ̄w←ρ̄w + δv

∂ρ̄w
∂αv

instead of running the iterative algorithm. Second, consider the process of evaluating
loss reduction of all possible splits of some node, which is fixed during this process. Using the notation in
Section 6.5, the partial derivatives of the regularization penalty similar to (15) are referred to O(nd) times
in this process, but they are invariant and need to be computed just once. The change in penalty caused by
node split is evaluated also O(nd) times, and one can make each evaluation run in O(1) instead of O(z) by
storing invariant quantities. To see this, as in Section 5.3.1, consider splitting a node associated with weight

31



α, and let uk for k = 1, 2 be the new leaf nodes after split with weight α+ δk. Write T̃ (δ1, δ2) for the new
tree. Define ρ̄w and ρw as above but on T̃ (0, 0) instead of T . To simplify notation, let ρ̇w,k = ∂ρw

∂αuk
. Due

to symmetry, we have: ρ̇w,1 = ρ̇w,2 for w 6= u1 & w 6= u2 . The change in penalty is: G(T̃ (δ1, δ2)) −
G(T ) =

(
G(T̃ (δ1, δ2))− G(T̃ (0, 0))

)
+
(
G(T̃ (0, 0))− G(T )

)
. Since the second term is invariant during

this process, it needs to be computed only once. To ease notation, let

∆v = γdv

ρv 2∑
k=1

δkρ̇v,k +
1

2

(
2∑

k=1

δkρ̇v,k

)2
 .

Then the first term in the penalty change can be written as:

(
G(T̃ (δ1, δ2))− G(T̃ (0, 0))

)
=

1

2

∑
v∈T̃

γdv

(
ρv +

2∑
k=1

δkρ̇v,k

)2

− 1

2

∑
v∈T̃

γdvρ2
v =

∑
v∈T̃

∆v

=(δ1 + δ2)
∑

v∈T̃−{u1,u2}

γdvρvρ̇v,1 +
1

2
(δ1 + δ2)2

∑
v∈T̃−{u1,u2}

γdv ρ̇2
v,1 + ∆u1 + ∆u2 .

Here
∑

v∈T̃−{u1,u2} γ
dvρvρ̇v,1 and

∑
v∈T̃−{u1,u2} γ

dv ρ̇2
v,1 are invariant during this process and can be pre-

computed; therefore, each evaluation of penalty differences runs in O(1).

A.3 Computational detail of the regularizer in Section 5.4.3

The same basic ideas above can be applied to make efficient implementation of the regularizer with sum-to-
zero sibling constraints. To optimize the additive change δu of the leaf weight αu, let {ρv} be the arguments
that minimize (9) so that G(T ) = λ ·

∑
v∈T γ

dvρ2/2. Then the partial derivatives of G(T (δu)) are obtained
by (15). From (14), we have:

∂ρw
∂αu

=


2−duk w = oT
2dw−duk−1 w 6= oT , w ∈ A(u) (w is either u or u’s ancestor)
−2dw−duk−1 w /∈ A(u), p(w) ∈ A(u) (w is u’s ancestor’s sibling)
0 otherwise

.

Optimization can be done using these quantities.
Regarding efficient implementation, one difference from the regularizer without the sibling constraints

above is that G(T̃ (0, 0)) = G(T ) with this regularizer and therefore G(T̃ (0, 0)) does not have to be com-
puted.

32


	Introduction
	Problem Setup
	Gradient Boosted Decision Tree
	Fully-Corrective Greedy Update and Structured Sparsity Regularization

	Regularized Greedy Forest
	Definitions and notation
	Algorithmic framework
	Specific Implementation
	Search for the optimum structure change (Line 2)
	Weight optimization/correction (Line 5)

	Tree-structured regularization
	L2 regularization on leaf-only models
	Minimum-penalty regularization
	Min-penalty regularization with sum-to-zero sibling constraints


	Experiments
	Data
	Synthesized data generation
	Real-world datasets

	Parameter settings and some computational detail
	Regularized greedy forest
	Gradient Boosted Decision Tree
	Common settings

	Comparison with GBDT
	Comparison with other tree ensemble methods
	Random forests
	Bayesian Additive Regression Trees (BART)

	Running time

	Conclusion
	Appendix
	Convergence of Algorithm 4
	Computational detail of the min-penalty regularization in Section 5.4.2
	Computational detail of the regularizer in Section 5.4.3


