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Pattern recognition addresses the problem to find struc-
ture in data. The nature of this structure is defined by an a
priori given hypothesis class C of possible data interpreta-
tions, e.g. data partitionings for clustering, embedding of
relational data in Euclidean spaces or total orders in sort-
ing of objects. The data analyst applies an algorithm A to
select one hypothesis c(X) ∈ C or a subset of hypotheses
Cγ(X) ⊂ C(X) that “explain” the data X. The parameter γ
specifies the closeness of hypotheses to the target hypothe-
sis c(X). Mathematically, an algorithm establishes a rela-
tion between input data X ∈ X out of a data space X and
output hypotheses in a hypothesis class C , i.e.,A ⊆ X ×C.
Often but not always, such an algorithm optimizes a quality
measure or, equivalently, minimizes some cost or risk. An
exception for clustering is e.g. single linkage which does
not optimize a cost function.

The robustness of algorithms poses a key conceptual
problem when information processing is affected by noise.
Frequently, algorithms return significantly different hy-
potheses to new (test) data which contain the same signal
as previous (training) data but differ in the fluctuations. In
a machine learning sense, the algorithm does not generalize
well! How should can we define and measure this general-
ization ability of an algorithm? Following classical statis-
tics, we could try to estimate the probability distribution
of the data and with this estimate, we could calculate the
statistical risk of the method. However, many information
processing problems are characterized by data spaces which
are much larger than the hypothesis class of data interpre-
tations. In such a setting, we might never get enough data
to estimate the data distribution, but the information in the
instances is sufficient to estimate a probability distribution
of the hypotheses1.

We advocate an information theoretic perspective for
structure inference in particular in large data set. The fluc-
tuations in the measurements X quantize the hypothesis
space of the pattern recognition algorithm A. This con-
cept has been explicitly developed for data clustering al-

1Consider e.g. figure ground segmentation of an image with n pixels
which yields a data space of size 256n. In case that we characterize the
image by pairwise comparisons of pixel neighborhoods, we derive a graph
with n vertices and n(n − 1)/2 real valued similarities. The resulting
cardinality of the data space amounts toO(Rn(n−1)/2). In contrast to the
size of the data space, the cardinality of the hypothesis space is |C| = 2n.
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1.  Sender sends a 
permutation index τs to 
problem generator. 

2.  Problem generator sends a 
new problem with permuted 
indices to receiver without 
revealing τs. 

3.  Receiver identifies the 
permutation     by 
comparing approximation 
sets. 
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Figure 1. Communication process: (1) the sender selects trans-
formation τs, (2) the problem generator draws X(2) ∼ P(X)
and applies τs to it, and the receiver has to estimate τ̂ based on
X̃ = τs ◦X(2).

gorithms, which minimize cost functions [2], and for gen-
eral optimization problems [3]. The information theoretic
framework has the following components: a Problem Gen-
erator PG generates data X ∼ P(X), a Sender S defines a
code and sends one of the code messages, a Receiver R de-
codes the sent message. To establish a code, PG generates
a training data set X(1). The sender then calculates an ap-
proximation set Cγ(X(1)) ⊂ C to the hypothesis A(X(1)).
If A minimizes costs R

(
A(X(1))

)
then the approximation

set is defined by e.g. Boltzmann weights. For pattern recog-
nition algorithms which do not minimize costs with a partial
order of all hypotheses, we adapt the concept of smoothed
analysis [6] to generate a set of “close” solutions to the hy-
pothesis A(X(1)). In a second step, the sender selects a set
of transformations T in such a way2 that the union of the
resulting approximation sets

⋃
τ∈T Cγ(τ ◦X(1)) covers the

hypothesis space. The set T is communicated to the receiver
as the communication code.

For communicating messages as depicted in fig. 1, the
sender selects a transformation τs and send it to the problem
generator. PG generates a second (test) data set X(2), ap-
plies τs to the new data and sends the resulting X̃ = τ◦X(2)

to the receiver. Decoding the message requires to estimate
the transformation τ̂ based on the observed data X̃. The de-
coding procedure selects the transformation where the re-
spective approximation set has the maximal overlap with
one of the approximation sets based on X(1), i.e.,

τ̂ = argmax
τ∈T
Cγ(τ ◦X(1)) ∩ Cγ(X̃) (1)

The condition P(τ̂ 6= τs|τs,X(1),X(2))
n→∞−→ 0 of van-

2T is the set of permutations for combinatorial optimization problems
or the set of shifts/rotations for continuous localization/orientation prob-
lems.
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ishing decoding error defines a design criterion for a code
with maximal information content. We have to cover the
hypothesis class with a maximal number of distinguishable
approximation sets where the messages τs can be decoded
with vanishing error. A large deviation analysis of the con-
ditional probability of error yields an upper bound on the
rate ρ = log2 |T| , i.e.,

ρ < Iγ(τs, τ̂) ≡
1

n
log
|C| |C(1&2)

γ |
|C(1)γ | |C(2)γ |

. (2)

|C(1)γ |, |C(2)γ | denote the cardinalities of the approximation
sets for data X(1),X(2), respectively; C(1&2)

γ specifies the
set of hypotheses which jointly approximate both data sets.
Iγ(τs, τ̂) can be interpreted as a mutual information with
respective Gibbs distributions as arguments [3]. Model se-
lection is achieved by maximizing Iγ(τs, τ̂) w.r.t. γ. More
importantly, we can also select the algorithm A from a set
of algorithms according to the ranking induced by Iγ . Al-
gorithms with high generalization capacity are preferable
since they are more robust against noise and more sensitive
to signal than alternatives.

This selection concept for algorithms is supported by
empirical evidence in model validation problems for rela-
tional data clustering [4]. For a correlation matrix of gene
expression data gathered from the mussel Mytilus Gallo-
provincialis [1], pairwise clustering produced a more in-
formative clustering than both normalized cut and correla-
tion clustering. Furthermore, denoising of Boolean matri-
ces guided by the generalization capacity of SVD suggests
a cutoff rank for the SVD spectrum [5].

In a recent study, we have measured the sensitivity of
sorting algorithms to errors in pairwise comparisons of
items. Figure 2 shows the capacity of various sorting algo-
rithms and their bit rate of extracted information per com-
putation step, e.g. per comparison in the case of sorting.
The study clearly demonstrates that robust algorithms like
BubbleSort invest their excess comparisons to compen-
sate for fluctuations. This computational redundancy in-
creases the capacity of the algorithm and yields an improved
localization ability in the hypothesis class. Computation-
ally efficient methods like MergeSort perform superior
in the noiseless case but sacrifice capacity for computational
speed in the highly noisy case.

In principle, this concept of measuring the generaliza-
tion performance of algorithms can be applied to algorithm
evaluation and also to robust algorithm design. It endows
the space of algorithm with a topology since two algorithms
are neighbors if their approximation sets for the same input
distributions share a high overlap. We are convinced that the
information theoretic analysis of algorithms will shed new
light on the relation between computational complexity and
statistical complexity.

Figure 2.
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