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Phase retrieval has been a longstanding problem in optics and x-ray crystallography since the 1970s [3, 2].
Early methods to recover the phase signal using Fourier transform mostly relied on additional information
about the signal, such as band limitation, nonzero support, real-valuedness, and nonnegativity. Common
drawbacks of these iterative methods are that they may not converge to the global solution, and the rate of
convergence is often slow. More recently, phase retrieval has been framed as a low-rank matrix completion
problem in [1]. Given an overdetermined system, a lifting technique was used to approximate the linear model
constraint as a semidefinite program (SDP). The authors also derived an upper-bound for the sampling rate
that guarantees exact recovery in the noise-free case and stable recovery in the noisy case.

The main contribution of this work is a convex formulation of the underdetermined compressive phase
retrieval problem. Using the lifting technique, the NP-hard problem is relaxed as a semidefinite program. We
derive bounds for guaranteed recovery of the true signal and compare the performance of our algorithm with
traditional compressive sensing and phase retrieval algorithms. The results extend the type of applications
that compressive sensing can be applied to, namely, applications where only magnitudes can be observed. A
potential application of interest with this property is x-ray diffraction.

1 Compressive Phase Retrieval via Lifting

In a linear model y = Ax, we assume that only the squared magnitude of the output is observed:

bi = |yi|
2 = |〈x, ai〉|

2 = |aH
i x|2, i = 1, · · · , N, (1)

where AH = [a1, · · · , aN ] ∈ C
n×N , yT = [y1, · · · , yN ] ∈ C

1×N , and aH denotes the Hermitian transpose of
a. We assume {bi, ai}

N
i=1 are known and seek x. When N ≥ n, this combinatorial problem is referred to

as the phase retrieval problem. For compressive phase retrieval (CPR), i.e., N < n, additional assumptions
are needed to find a unique solution up to a global phase [4].

Motivated by compressive sensing, we seek the sparsest solution of CPR satisfying (1). We have shown
in [5] that the intractable problem can be relaxed to a semidefinite program (SDP)

min
X�0

Tr(X) + λ‖X‖1, subj. to bi = Tr(aia
H
i X), i = 1, · · · , N, (2)

where λ > 0 is a design parameter. Finally, the estimate of x can be found by computing the rank-1
decomposition of X via SVD. We refer to the solution as Compressive Phase Retrieval via Lifting (CPRL).

2 Theoretical Results

In order to state some theoretical properties, we need a generalization of the restricted isometry prop-
erty (RIP) and mutual coherence. Firstly, define the linear operator B of X as B : X ∈ C

n×n 7→
{Tr(aia

H
i X)}1≤i≤N ∈ R

N . We now say that a linear operator B is (ε, k)-RIP if for all X 6= 0 s.t. ‖X‖0 ≤ k

we have
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‖B(X)‖2
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∣
< ε. Secondly, let B(:) be the matrix satisfying b = B(:)X(:) with X(:) the vectorized

version of X. Now, for a matrix A, define the mutual coherence as µ(A) = max1≤k,j≤n,k 6=j
|aH

k aj |
‖ak‖2‖aj‖2

and

let x̄ be the sparsest solution to (1). We then have that the solution of (2), X̃, is equal to x̄x̄H if it has rank

1 and B is (ε, 2‖X̃‖0)-RIP with ε < 1, or if ‖X̃‖0 < 0.5(1 + 1/µ(B(:))). The proof is given in [5].

3 Experiments

Since (2) is an SDP, it can be solved by standard convex optimization software. However, it is well known that
the standard toolboxes based on interior-point methods suffer when the dimension of X is large. We therefore
propose a greedy approximate algorithm tailored to solving (2). Under mild conditions, the algorithm can
accurately solve large problems of the form (2). The algorithm is summarized as follows:
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Algorithm 1: Greedy Compressive Phase Retrieval via Lifting (GCPRL)

Set support set I = ∅ and let γ > 0, ε > 0.
repeat

for k = 1, · · · , N, do

Set Ik = I
⋃

{k} and solve Xk
.
= arg minX�0 Tr(X(Ik)) + γ

∑N

i=1(bi − Tr(a
(Ik)
i a

(Ik)
i

H

X(Ik)))2.
Let Wk denote the corresponding objective value.

Let p be such that Wp ≤ Wk, k = 1, · · · , N . Set I = I
⋃

{p} and X = Xp.
until Wp < ε ;

To demonstrate the effectiveness of GCPRL and as an illustration of the theoretical bounds, let us consider a
numerical example. Let the true x0 ∈ C

n be a k-sparse signal, let the nonzero elements be randomly chosen
and their values randomly distributed on the complex unit circle. Let A ∈ C

N×n be generated by sampling
from a complex unit Gaussian distribution.

If we fix n/N = 2, that is, twice as many unknowns as measurements, and apply GCPRL for different
values of n, N and k, we obtain the computational times visualized in the left plot of Figure 1. In all
simulations γ = 10 and ε = 10−3 are used in GCPRL. The true sparsity pattern is always recovered. Since
GCPRL can be executed in parallel, the execution time can be further divided by the number of cores used
(the average run time in Figure 1 is computed on a standard laptop running Matlab, 2 cores, and using CVX
to solve the low-dimensional SDP of GCPRL). Hence, the algorithm is several magnitudes faster than the
standard interior-point methods used in CVX.

We also use this particular example to show the theoretical bounds of successful recovery. The middle
plot of Figure 1 shows the quantity 0.5(1 + 1/µ(B)). We conclude that if the solution to (2) has rank 1,
25 ≤ n, N ≤ 125 and only one nonzero component, then it is also the sparse solution to (1). As shown in
the right plot of Figure 1, the empirical 95% success curve, the theoretical bound is also very conservative.
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Figure 1: Left: Average run time of GCPRL in Matlab CVX environment. Middle: The quantity 0.5(1 +
1/µ(B)). Right: The 95% success rate of solving (2) for k = 2 via CVX.

References

[1] E. J. Candès, Y. Eldar, T. Strohmer, and V. Voroninski. Phase retrieval via matrix completion. Technical Report
arXiv:1109.0573, Stanford Univeristy, September 2011.

[2] R. Gonsalves. Phase retrieval from modulus data. Journal of Optical Society of America, 66(9):961–964, 1976.

[3] D. Kohler and L. Mandel. Source reconstruction from the modulus of the correlation function: a practical approach
to the phase problem of optical coherence theory. Journal of the Optical Society of America, 63(2):126–134, 1973.

[4] M. Moravec, J. Romberg, and R. Baraniuk. Compressive phase retrieval. In SPIE International Symposium on
Optical Science and Technology, 2007.

[5] H. Ohlsson, A. Y. Yang, R. Dong, and S. Sastry. Compressive Phase Retrieval From Squared Output Mea-
surements Via Semidefinite Programming. Technical Report arXiv:1111.6323, University of California, Berkeley,
November 2011.

Topic: visual processing and pattern recognition
Preference: oral

2


