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I. INTRODUCTION

Classification applications where the probability density function of classes evolve over time are referred as concept drifts.

Abrupt concept drifts refer to situations where the data-generating process suddenly changes from a stationary state to another

one, e.g., due to a permanent or a transient fault. Differently, gradual concept drifts refer to cases where the process continuously

evolves over time, a situation typically caused by aging effects or thermal drifts.

Input samples (observations) are vectors generated from process X according to an unknown distribution. Denote by x ∈ R
n

the observation, xt the observation at time t, and yt the associated class label. Without loss of generality, we consider a two-class

classification problem, i.e., y(t) ∈ {ω1, ω2}. The probability density function of the inputs at time t can be thus defined as

p(x|t) = p(ω1|t)p(x|ω1, t) + p(ω2|t)p(x|ω2, t),

where p(ω1|t) and p(ω2|t) = 1 − p(ω1|t) are the probabilities of getting a sample of class ω1 and ω2, respectively, while

p(x|ω1, t), p(x|ω2, t) are the conditional probability distributions at time t. Both the probabilities of the classes and the

conditional pdfs are assumed to be unknown and may evolve over time, whenever a non-stationarity occurs.

Monitoring the classification error allows a generic consistent classifier for reacting to changes when these directly influence

its accuracy, and this is in principle preferable. However, assessing the stationarity by means of the online classification error

becomes critical in applications where obtaining supervised information is difficult or costly. A viable option at low supervised-

sample rates consists in monitoring the distribution of the unlabeled input observations. Unfortunately, this solution does allow

us for detecting only changes that affect the distribution of observations, but not the conditional classification probabilities

p(x|ω1, t) and p(x|ω2, t) such as a swap of classes.

We suggest a solution which combines the two mechanisms by monitoring both the distribution of observations and the

classification error to detect changes in the data-generating process. The designed adaptive classifier exploits both supervised

and unsupervised samples to adapt to changes within an ensemble framework: each time a change is detected, the previously

trained classifiers are tested to identify if the novel concept has been already envisaged or not. If the concept is recurrent [1],

the existing classifier is re-activated; otherwise the obsolete classifier is replaced with a new one.

The training sequence consists in the first T0 observations that are assumed to be generated in stationary conditions; supervised

pairs (xt, yt) are provided both within the training sequence and during the operational life asynchronously w.r.t. the inputs.

II. ADAPTIVE ENSAMBLE OF CLASSIFIERS

The key elements to design an adaptive classifier evolving when a non-stationarity occurs are: CDTX , the Change-Detection

Test (CDT) observing changes in stationarity of X; CDTε, the CDT for assessing the stationarity of the classification error;

K the current classifier used to classify inputs, and Ci the i-th concept, which has to be considered as a set of observations

(together with supervised labels when applicable) associated to a specific state of the data-generating process.

In the proposed adaptive classifier we adopt the ICI-based CDT [2] as CDTX , which exploits the Intersection of Confidence

Intervals (ICI) rule [3], for its effectiveness in detecting both abrupt and gradual concept drifts. Thus, CDTX relies on

specific features extracted from disjoint subsequences of data which, in stationary conditions, are i.i.d. and follow a Gaussian

distribution. Examples of such features are the sample mean and variance computed on disjoint subsequences (the former can

be approximated with a Gaussian distribution from the Central Limit Theorem, the latter follows the Gaussian distribution

thanks to an ad-hoc transformation). Then, the ICI-rule is used to assess, on-line and sequentially, if the feature values have

been generated from the same Gaussian distribution.

Differently, CDTε consists in a customization of the ICI-based CDT to assess the constant value hypothesis for the

classification error. Let (xt, yt) be a supervised couple and let K(xt) be the outcome of classifier K on xt. The element-wise

classification error of K is

εt =

{

0, if yt = K(xt);

1, otherwise,
(1)

which over time can be modeled as a sequence of i.i.d. Bernoulli random variables. The parameter p of the Bernoulli distribution

corresponds to the expected error of K and, in stationary conditions (when both X and K do not change), is constant. To identify

changes in stationarity (both in the classes’ probability or in the conditional pdfs), the ICI-rule monitors the average classification



Train K, CDTX and CDTε on observations in [0, T0];
while (1) do

input receive new data xt and, when available, yt;

if (Either CDTX or CDTε detects a nonstationarity at time t) then
Characterize the current concept Ci;

Check if Ci is coherent with any of other Cj , j 6= i;

if (Ci is recurrent) then
Reactivate the corresponding classifier;

Integrate recent supervised couples (if any);
else

Drop K and save the corresponding concept Ci;

Reconfigure and activate K from Ci;

Reconfigure both CDTX and CDTε on Ci;
end

end

if (Supervised label yt is provided) then
Insert (xt, yt) in the knowledge-base of K and update K;

else
Assign label K(xt) to xt.

end

end
Algorithm 1: The high-level algorithm for the Adaptive Ensemble Classifier.

error computed on disjoint subsequences of ν supervised observations which, indeed, follow a Binomial distribution B(p, ν)
approximable with a Gaussian one whenever ν is sufficiently large,

B(p, ν) ∼ N
(

pν, p(1− p)ν
)

. (2)

The Gaussian approximation allows us for directly applying the ICI-rule to verify sequentially if the average classifier error

is constant as new observations arrive. For monitoring purposes we leverage an auxiliary classifier K0, which is configured

on the initial training set and is never updated; as such, its expected error p0 remains constant as far as the data-generating

process is stationary. Thus, CDTε assesses if the sample mean of ν classification errors (1) – computed from K0 – is constant

over time.

Whenever CDTX or CDTε detects a non stationarity at time T̂ , a refinement procedure is executed yielding Tref, a more

accurate estimate of the change-time instant. It is thus possible to define two subsequences of observations: those from [0, T0] and

those from [Tref, T̂ ] that are representative of X before and after the non-stationarity, respectively. Each non-stationarity needs to

be validated, to prevent a false detection to result in a classifier reconfiguration. The change-validation procedure is performed

by assessing if both the features of CDTX and the average classification error of K0 computed from the observations in [0, T0]
(i.e., before the suspected change) coincide with those in [Tref, T̂ ] (i.e., after the suspected change). The change validation on

the features of CDTX is performed with a multivariate hypothesis test relying on the Hotelling T2 statistics (the features follow

a Gaussian distribution) as suggested in [4], while the change validation on the classification error of K0 can be formulated

as an (univariate) inference problem on the proportions of two populations, which is ruled by a Gaussian distribution. In both

cases the null hypothesis can be rejected according to a defined significance level α.

Any validated change requires the classifier K to be retrained (see Algorithm 1), otherwise the change is discarded and only

the CDT providing the false detection is reconfigured to continue its monitoring activity.

Recurrent concepts are identified by testing both the observations and classification errors similarity. More specifically, when

comparing two concepts Ci and Cj , i 6= j, we assess if both the averages of the features and the classification errors computed

in [Tref,i, T̂i] correspond to those computed in [Tref,j , T̂j ]. When Ci and Cj satisfy a stochastic similarity condition we consider

concept Ci to be recurrent and the supervised samples in [Tref,j , T̂j ] can be safely paired with those in [Tref,i, T̂i] to retrain K.
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