Weighted Co-regularization for Multiview Spectral Clustering
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Given a kernel matrix W, Spectral Clustering [3, 4] involves finding a vector u (which we refer as uni-
representation) which minimizes the following objective function:

.1
argmin 5 Z Wi (wi — uj)? (1)
ij

with an appropriate length constraint on u. The intuition is that, if a pair of points z; and x; are highly
similar, i.e. Wy is very high, then the objective function enforces the components uy and w; of the uni-
representation vector to be close to each other (and hence two two points are more likely to belong to the
same cluster). The objective function in Eqn. 2 can be rewritten as:

1 :
arg min 5 Z Wij(ui — u;)? = arg min u’ Lu (2)
ij
st. u'Du=1 (3)

where L = D — W is the unnormalized Laplacian matrix corresponding to W and D is the diagonal matrix
with Dy = > ; Wij. It turns out that, this is same as solving the generalized eigenproblem Lu = ADu.

For multi-view data, spectral clustering can be naively applied on individual views and each view would
give an independent representation of the data. However, performing clustering with each of these repre-
sentations may potentially lead to clusterings that are different from each other and possibly different from
the underlying true clustering. To overcome this problem, [2] proposes adding a co-regularization term to
the objective function which minimizes the disagreement among the resulting clusterings across the multiple
views. In this paper we propose a new co-regularization term which has the same form as the individual
objective functions (Eqn. 2) and hence can be optimized easily.

Let u and v be the uni-representations of the observations in the individual views. Given the similarity

matrices in both the views, W) and W single view spectral clustering minimizes >4 W(l)(uZ — uy;)?

and >, I/V(Q)(vZ —v;)? for both the views independently (subject to length constraints of the form Eqn. 3).
Since the individual similarity matrices can be noisy we use a new term W2) | called view-similarity matrix,

which captures the notion of trustworthyness of the kernel matrices across views. A higher value of Wi(ju)
for a pair indicates that, for this pair, we trust the similarity values provided by the individual similarity
matrices. Likewise, setting all the entries of this matrix to a constant value indicates that we trust all the
pairs equally. Then we propose to use the following cost function:

o = S (=)~ (=) = (=)7L~ v) (4)

where L1?) is the Laplacian corresponding to the view-similarity matrix W (2).



Folding the co-regularization term into the objective function, the final optimization problem becomes
arg miny v £(u, v) where £(u, v) is given by:

u/ LMu+vIL®v 4+ a(u—v)TL? (u - v) (5)
st. u'DWu+vIDOy =1

Where L) and L are the unnormalized laplacians of both the views. Forming the Lagrangian and setting
its first derivative with respect to u and v to zero yields the following generalized eigenproblem:
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In our experiments on WebKB data set [1], we show that our method performs better than many baseline
systems. Existing co-regularization based approaches [2] ignore the fact that example pairs which are deemed
potentially similar across all the views, rather than across only some of the views, are more likely to belong
to the same cluster. Our method provides a way to regularize certain pairs of points more than the rest.
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