
NeuFlow: A RuntimeReconfigurableDataflow
Architecture for Vision

Clément Farabet1,2 Yann LeCun1

Eugenio Culurciello2

1 Courant Institute of Mathematical Sciences, New York University
715 Broadway, New York, NY 10003

2 Electrical Engineering Department, YaleUniversity
10 HillhouseAvenue, New Haven, CT 06511

cfarabet@nyu.edu
http://www.neuflow.org

Computer vision is the task of extracting high-level information from raw images. Generic, or general-purpose
synthetic vision systemshave for ultimate goal the ellaboration of a model that captures the relationship between
high-dimensional data (images, videos) into a low-dimensional decision space, wherearbitrary information can be
retrieved easily. The exploration of such models has been an active field of research for the past decades, with a
particular focuson biologically -inspired visual models [9, 7, 6].

Biologically inspired vision models, and more generally image processing algorithmsare usually expressed as
sequences, or more generally graphs of operations or transformations. They can be well described by a modular
approach, in which each module processesan input imagebank and produces anew bank.

X +

%

MUX.

X +

%

MUX.

X +

%

MUX.

X +

%

MUX.

X +

∑π %

MUX.

X +

%

MUX.

X +

%

MUX.

X +

%

MUX.

X +

%

MUX.

Control

 & Config

Smart DMA

Configurable Route Global Data Lines Runtime Config Bus

Off-chip

Memory

Mem∑π Mem∑π Mem

∑π Mem ∑π Mem

∑π Mem∑π Mem

∑π Mem

∑π Mem

A Runtime Reconfigurable Dataflow Architecture

PT PT PT

PTPTPT

PT PT PT

Figure1: A runtime reconfigurable dataflow grid of processing tiles (PTs).

We present a scalable hardware architecture for large-scale multi- layered synthetic vision systems based on
filter banks—neuFlow—and a dataflow compiler—luaFlow—that transforms a high-level flow-graph representa-
tion of an algorithm into machine code for neuFlow. This vision processor is a dataflow engine that can perform

1

real-timedetection, recognition and localization in mega-pixel images processed as pipelined streams. Thesystem
was designed with the goal of providing categorization of an arbitrary number of objects, while consuming ten
times less than abench-top or laptop computer (on theorder of 10W for an FPGA implementation).

First dataflow hardwarearchitectureswereintroduced in [1, 3]. Our work buildson theseideas, and extendsthe
concept of dataflow grid, and runtimeconfigurability . A schematic summary of theneuFlow system is presented in
Figure1. Themain componentsare: (1) aControl Unit (acustom 64bit CPU), (2) agrid of Processing Tiles (PTs),
and (3) aSmart DMA interfacing external memory via astandard controller.

The PTs are independent processing tiles laid out on a two-dimensional grid. The PTs contain a routing multi-
plexer (MUX) and local operators. Local operators can range from simple, generic adders, multipliers, dividers to
nested operators such as multiply-and-accumulate arrays (to efficiently compute convolutions) or non-linear map-
ping engines(to efficiently computenon-linear functions). Theseoperatorsarefully pipelined to produceoneresult
per clock cycle.

A key aspect of this grid is its configuration capabilities. Many systemshave been proposed which are based
on two-dimensional arrays of processing elements interconnected by a routing fabric that is reconfigurable. Field
Programmable GateArrays(FPGAs) for instance, offer oneof themost versatile grid of processing elements. Each
of these processing elements can be connected to any of the other elements of the grid, which provides with the
most generic routing fabric one can think of. The main drawback is the reconfiguration time, which takes in the
order of milliseconds.

The grid presented here offers restricted connectivity (each tile can only be connected to its neighbors and a
few global N-to-N datalines), and relieson anetwork-on-chip (NoC) to efficiently broadcast configuration packets.
Each module (PT and DMA ports) in the design has a set of configurable parameters, routes or settings (depicted
as squares on Figure 1), and possesses a unique address on the network. The control unit interfaces the NoC to
efficiently reconfigurethegrid at runtime. Reconfiguration timesarein theorder of 10−6 to 10

−8 seconds, allowing
thegrid to be reconfigured thousandsof timesasecond.

Figure 2: Street scene parsing: a convolutional network was trained on the LabelMe spanish dataset [8] with a
method similar to [5]. The training set only contains photos from spanish cities; the image above is a picture
taken in Edinburgh. The convolutional network is fully computed on neuFlow, achieving a speedup of about 100x
(500x380 images areprocessed in 80ms, as opposed to 8s on a laptop).

Several applications were implemented: from a simple face detector [4] to a pixel-wise obstacle classifier [2]
and a complete street scene parser, as shown on Figure 2. Others can be seen at www.neuflow.org. Figure 3
reportsperformancecomparisonsbetween several platforms.

2

Intel
2Core

neuFlow
Virtex4

neuFlow
Virtex 6

nVidia
GT335m

neuFlow
IBM 65nm

nVidia
GTX480

Peak
GOP/sec 10? 40 160 182 1200 1350

Actual
GOP/sec 1.1 37 147 54 1102.5 294

FPS 1.4 46 182 67 1365 374

Power (W) 30 10 10 30 3 220

Embed?
(GOP/s/W) 0.03667 3.7 14.7 1.8 367.5 1.33636

Profiling*

* computing a 16x10x10 filter bank over a 4x500x500 input image

Figure 3: Performance comparison. 1- Intel DuoCore: laptop-class CPU, 2.7GHz, optimized C code, 2- neuFlow
on Xilinx Virtex4/6: two implementations of neuFlow—actual measurements; 3- neuFlow on IBM 65nm process:
simulated results, the design was fully placed and routed; 4- two GPU implementations: low power GT335m and
high-end GTX480.

References

[1] Duane Albert Adams. A computation model with data flow sequencing. PhD thesis, Stanford, CA, USA, 1969.

[2] Benoit Corda, Clément Farabet, Marco Scoffier, and Yann LeCun. Building heterogeneous platforms for end-to-end
online learning based on dataflow computing design. Dec 2010.

[3] Jack B. Dennis and David P. Misunas. A preliminary architecture for a basic data-flow processor. SIGARCH Comput.
Archit. News, 3(4):126–132, 1974.

[4] Clément Farabet, Cyril Poulet, Jefferson Y. Han, and Yann LeCun. Cnp: An fpga-based processor for convolutional
networks. In International Conference on Field Programmable Logic and Applications (FPL’09), Prague, September
2009. IEEE.

[5] David Grangier, Léon Bottou, and Ronan Collobert. Deep convolutional networks for scene parsing. ICML 2009 Deep
Learning Workshop, June2009.

[6] Koray Kavukcuoglu, Marc’Aurelio Ranzato, Rob Fergus, and Yann LeCun. Learning invariant features through topo-
graphic filter maps. In Proc. International Conference on Computer Vision and Pattern Recognition (CVPR’09). IEEE,
2009.

[7] NicolasPinto, David D Cox, and JamesJDiCarlo. Why is real-world visual object recognition hard? PLoSComput Biol,
4(1):e27, 01 2008.

[8] B Russell, A Torralba, K Murphy, and W T Freeman. Labelme: a database and web-based tool for image annotation.
International Journal of Computer Vision, 2007.

[9] Thomas Serre, Lior Wolf, and Tomaso Poggio. Object recognition with features inspired by visual cortex. In CVPR,
2005.

3

