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Introduction. We propose a novel approach for training
deterministic auto-encoders. We show that by adding a
well chosen penalty term to the classical reconstruction
cost function, we can achieve results that equal or surpass
those attained by other regularized auto-encoders as well
as denoising auto-encoders on a range of data sets. This
penalty term corresponds to the Frobenius norm of the
Jacobian matrix of the encoder activations with respect
to the input. We show that this penalty term results in a
localized space contraction which in turn yields robust
features on the activation layer. We find empirically that
this penalty helps to carve a representation that better
captures the local directions of variation dictated by the
data, corresponding to a lower-dimensional non-linear
manifold, while being more invariant to the vast majority
of directions orthogonal to the manifold. Finally, we show
that by using the learned features to initialize a MLP, we
achieve state of the art classification error on a range of
data sets, surpassing other methods of pre-training.

Contracting auto-encoder (CAE). The standard en-
coderRumelhart et al. (1986); Baldi and Hornik (1989) is a
function f that maps an input x ∈ IRdx to hidden representa-
tion h(x) ∈ IRdh . It has the form h = f(x) = sf (Wx+bh),
where sf is a nonlinear activation function, typically a lo-
gistic sigmoid(z) = 1

1+e−z . The encoder is parametrized
by a dh×dx weight matrix W , and a bias vector bh ∈ IRdh .

The decoder function g maps hidden representation h back
to a reconstruction y: y = g(h) = sg(W ′h + by), where
sg is the decoder’s activation function, typically either the
identity (yielding linear reconstruction) or a sigmoid. The
decoder’s parameters are a bias vector by ∈ IRdx , and matrix
W ′. In this work we only explore the tied weights case, in
which W ′ = WT .

Auto-encoder training consists in finding parameters θ =
{W, bh, by} that minimize the reconstruction error on a
training set of examples Dn.

From the motivation of robustness to small perturbations
around the training points, we propose a regularization term
that corresponds to the Jacobian of the hidden representa-
tion with respect to the input Jf (x) = ∂h

∂x (x) which favors

mappings that are more strongly contracting at the train-
ing samples. The resulting contracting auto-encoder (CAE)
can then be expressed as:

JCAE(θ) =
∑

x∈Dn

L(x, g(f(x))) + λ‖Jf (x)‖2F , (1)

where L is the reconstruction error. Typical choices in-
clude the squared error L(x, y) = ‖x − y‖2 used in cases
of linear reconstruction and the cross-entropy loss when
sg is the sigmoid (and inputs are in [0, 1]): L(x, y) =
−

∑dx

i=1 xi log(yi) + (1− xi) log(1− yi).

Experiments and results

Classification. We used the weights learned by the CAE
to initialize a multi-layer neural network. We then com-
pared the classification results obtained with other meth-
ods for initializing deep networks on a range of data
sets Larochelle et al. (2007)1. In most case, we achieved
state of the art results as can be seen in the table below

Geometric contraction. We compared the contraction
effect of the CAE to other auto-encoder variants by two dif-
ferent methods. We first calculated for each example of the
validation set the singular value decomposition of the Jaco-
bian to obtain the average spectrum 1. We also measured
the ratio of contraction of different models used for unsu-
pervised training, by generating artificial samples around
the data set points and calculating the ratio of their distance
in the input space and in the feature space.

Conclusion. In this paper, we attempt to answer the fol-
lowing question: what makes a good representation?. Be-
sides being useful for a particular task, which we can mea-
sure, or towards which we can train a representation, this
paper highlights the advantages for representations to be
locally invariant in many directions of change of the raw in-
put. This idea is implemented by a penalty on the Frobenius
norm of the Jacobian matrix of the encoder mapping, which
computes the representation. The paper also introduces

1Data sets available at http://www.iro.umontreal.
ca/˜lisa/icml2007.

http://www.iro.umontreal.ca/~lisa/icml2007
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Figure 1: Left: Average spectrum of the encoder’s Jacobian, for the CIFAR-bw dataset. Large singular values correspond
to the local directions of “allowed” variation learned from the dataset. The CAE having fewer large singular values and a
sharper decreasing spectrum suggests that it does a better job of characterizing a low-dimensional manifold near the training
examples.Right: Contraction curves obtained with the considered models on MNIST show the CAE has a more localized
contraction near the dataset points than other models. Furthermore, the contraction does not increase in a monotone fashion
as with the other models, thus resulting in a more disentangled space.

Data Set SVMrbf SAE-3 RBM-3 DAE-b-3 CAE-1 CAE-2
basic 3.03±0.15 3.46±0.16 3.11±0.15 2.84±0.15 2.83±0.15 2.48±0.14

rot 11.11±0.28 10.30±0.27 10.30±0.27 9.53±0.26 11.59±0.28 9.66±0.26

bg-rand 14.58±0.31 11.28±0.28 6.73±0.22 10.30±0.27 13.57±0.30 10.90 ±0.27

bg-img 22.61±0.379 23.00±0.37 16.31±0.32 16.68±0.33 16.70±0.33 15.50±0.32

bg-img-rot 55.18±0.44 51.93±0.44 47.39±0.44 43.76±0.43 48.10±0.44 45.23±0.44

rect 2.15 ±0.13 2.41±0.13 2.60±0.14 1.99±0.12 1.48±0.10 1.21±0.10

rect-img 24.04±0.37 24.05±0.37 22.50±0.37 21.59±0.36 21.86±0.36 21.54±0.36

Table 1: Comparison of stacked contracting auto-encoders with 1 and 2 layers (CAE-1 and CAE-2) with other 3-layer
stacked models Vincent et al. (2008, 2010) and baseline SVM. Test error rate on all considered classification problems
is reported together with a 95% confidence interval. Best performer is in bold, as well as those for which confidence
intervals overlap. Clearly CAEs can be successfully used to build top-performing deep networks. 2 layers of CAE often
outperformed 3 layers of other stacked models.

empirical measures of robustness and invariance, based on
the contraction ratio of the learned mapping, at different
distances and in different directions around the training
examples. We hypothesize that this reveals the manifold
structure learned by the model, and we find (by looking at
the singular value spectrum of the mapping) that the Con-
tracting Auto-Encoder discovers lower-dimensional mani-
folds. In addition, experiments on many data sets suggest
that this penalty always helps an auto-encoder to perform
better, and competes or improves upon the representations
learned by Denoising Auto-Encoders or RBMs, in terms of
classification error.
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