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Dirichlet Diffusion Trees (DDT) [3, 4] are an interesting nonparametric Bayesian model, which defines
a nonparametric Bayesian prior over binary trees, with an a priori unbounded depth. MCMC is a natural
choise to perform inference with DDT. However, MCMC suffers from getting trapped in local optima. This
presents a serious problem when performing inference with tree structures, since the resulting solution space
is very complex and highly multi-modal. In this scenario, the local nature of the moves of MCMC makes
convergence prohibitive. Population MCMC (PopMCMC) [2, 1] has been proposed to try to avoid local
optima when using MCMC for inference. PopMCMC runs multiple chains at the same time, and exchanges
information between the chains, in order to propose non-local moves for each chain. In this work, we apply
PopMCMC to DDT inference to try to overcome the local optima problem.

DDT is a generative model, and data generated from DDT are exchangeable [3]. DDT generates data
points sequentially, and assumes all data points diffuse from the origin for unit time, say [0, 1], according to

brownian motion N (x1; 0, ~It). For each data point, at time t, it diverges from a branch shared by m previous
points with probability a(t)dt/m, where a(t) is the predefined diverging function. The way DDT generates
data can be represented as a tree. Figure 1, illustrates how DDT generates four points, where the detailed
diffusion paths are suppressed and replaced by straight lines between diverging points and data points.

One nice property of DDT is that the joint probability of observing a tree
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Figure 1: Illustration of
DDT

can be factorized into two terms, a data term and a structure term. The
data term involves the concrete locations of each diverging point and the point
itself; the structure term involves only the information about the tree structure,
which includes the diverging time of each diverging point. One can marginalize
the data term since the locations of each diverging point and each data point
follow a Brownian motion. Here we focus on structure term only. According
to the definition of DDT, the probability of a specific tree structure is the
product of the probabilities of observing each branch and the probabilities of
choosing each branch. The probability of observing a branch shared by m data
points from time s to time t is given by the probability of no divergence at

this branch [3]: p(no divergence) = exp
(
−
∫ t

s
a(u)
m du

)
= exp

(
A(s)−A(t)

m

)
, where A(t) =

∫ t

0
a(u)du is the

cumulative diverging function. The probability of observing the tree structure in Figure 1 is:
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To define clusters using DDT, we extend the standard DDT by adding a stopping timestamp: each
subtree below the stopping timestamp constitutes a cluster of leaf nodes. For example, the dotted line in
Figure 1 represents a stopping timestamp, and it defines two clusters, {x1, x2} and {x3, x4}. We use DDT
as a prior to the latent cluster structures of the observed data. As for the DDT in Figure 1, we don’t use
the data term, the concrete locations of internal nodes and leaf nodes, {xa, xb, xc, x1, x2, x3, x4}. We only
use the structure term to define cluster structures. Further, assume the observed features of the four data
points are y1, y2, y3, and y4.

Gibbs sampling a DDT structure is straightforward. At every iteration, Gibbs sampling can only sample
a path to one leaf node. This generates changes that are local to the DDT structure. We propose to use
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PopMCMC to perform non-local changes, and therefore avoid getting trapped in local optima. When using
PopMCMC for DDT, we run multiple chains; each chain has the same stationary distribution, which is the
posterior DDT distribution given the same observed data. We assume that the stopping timestamps for
all DDTs in different chains are the same, and randomly choose two chains to exchange DDT structure
information. We exchange the structure term of the two chosen DDTs for the same subset of leaf nodes.
Again, lets assume the DDT shown in Figure 1 is the current state of a chosen chain of PopMCMC, denoted
as T1. The exchanging procedure of PopMCMC is as follows. We first assume a generation order on the leaf
nodes, say 〈1, 3, 2, 4〉 (we can make this assumption because data generated from a DDT are exchangeable).
We randomly choose a subset of the leaf nodes, say {x2, x4}, and find the diverging time for each chosen
leaf node, t2 = ta and t4 = tc. We also remove the chosen leaf nodes from T1, and denote the rest of the

DDT as T ¬{x2,x4}
1 . The reason we assume an order before choosing a subset of the leaf nodes is that the

diverging time of each leaf node depends on the order of data generation. Likewise, we denote the second
chosen DDT as T2; we assume the same generation order on the leaf nodes, and find the diverging time for

{x2, x4} in T2, denoted as t′2 and t′4. We remove {x2, x4} from T2, resulting in T ¬{x2,x4}
2 . The structure

terms to be exchanged between T1 and T2 are {t2, t4} and {t′2, t′4}. We propose new paths to x2 and x4 in

T ¬{x2,x4}
1 using the diverging time {t′2, t′4}. This leads to a new DDT T ′1 . We also propose new paths to x2

and x4 in T ¬{x2,x4}
2 using diverging time {t2, t4}. This leads to a new DDT T ′2 . The acceptance ratio of the

exchange is:

π(T ′1 )π(T ′2 )Q(T1, T2|T ′1 , T ′2 )

π(T1)π(T2)Q(T ′1 , T ′2 |T1, T2)
(2)

where π(·) denotes the posterior distribution of DDT, and Q(·, ·|·, ·) denotes the proposal distribution.
When proposing new DDTs, the proposal distribution needs to choose branches for each chosen leaf

node. For example, lets assume we have already removed {x2, x4} from T1, and we are now adding {x2, x4}
to T ¬{x2,x4}

1 , conditioned on the new diverging time {t′2, t′4}. According to the leaf node generation order

〈1, 3, 2, 4〉, we need to first generate a path for x2 conditioned on T ¬{x2,x4}
1 and a new diverging time of

x2, say t′2. Without loss of generality, assume t′2 is greater than the stopping timestamp; then, x2 will be
either with x1 or with x4. A branch, between (xb, x1) and (xb, x3), needs to be chosen for x2 to follow.
Here we propose to choose a branch according to likelihood only, that is, the probability of choosing the
branch (xb, x1) is proportional to L({y1, y2}, {y3}), and the probability of choosing the branch (xb, x3) is
proportional to L({y1}, {y2, y3}). We proceed similarly when proposing a new path for x4.

In addition, in order to increase the acceptance ratio, we use a temperature τ to adjust the proposal
distribution, and the acceptance ratio becomes:

π(T ′1 )π(T ′2 )

π(T1)π(T2)

(
Q(T1, T2|T ′1 , T ′2 )

Q(T ′1 , T ′2 |T1, T2)

) 1
τ

(3)
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