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The spike and slab Restricted Boltzmann Machine
(ssRBM) is defined by having both a real valued “slab”
variable and a binary “spike” variable associated with
each unit in the hidden layer. Earlier work exploring a
simple incarnation of the ssRBM model family demon-
strated its utility as a model of natural images. In this
work, we explore an extension of the ssRBM model –
the µ-ssRBM – that includes additional terms to the
energy function which we use, in part, to address one
of the potential drawback of the original ssRBM intro-
duced in (Courville et al., 2010), specifically, the lack
of a guarantee that the model defines a valid density
over the whole data domain. We find that while it
is possible to parametrize the model to guarantee that
all conditionals of the model are well defined, loosening
this constraint empirically yields better classification
performance with the CIFAR-10 image dataset.

The µ-Spike and Slab RBM

The µ-ssRBM describes the interaction between three
random vectors: the visible vector v, the binary
“spike” variables h and the real-valued “slab” vari-
ables s. In what follows, we assume there are N hid-
den units: h ∈ [0, 1]N , s ∈ RN and a visible vector of
dimension D: v ∈ RD. The µ-ssRBM model is defined
via the energy function:
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with model parameters: (∀i) Wi ∈ RD, bi ∈ R, αi ∈
R, µi ∈ R and diagonal matrices Λ ∈ RD×D and Φi ∈
RD×D. From the energy function it is straightforward
to derive a set of conditional distributions p(s | v, h)
and p(v | s, h):
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where N (ξ, C) denotes a Gaussian with mean ξ and
covariance C. The covariance of p(v | s, h): Cv|s,h =(
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∑N

i=1 Φihi

)−1

is diagonal.

We now consider the effect of marginalizing out the
slab variables s to retrieve the traditional RBM con-
ditionals p(v | h) and p(h | v):

p(v | h) = N (Cv|h
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the last equality holds only if the covariance matrix
Cv|h is positive definite. Note that in marginaliz-
ing over s, the visible vector v remains Gaussian dis-
tributed but the covariance matrix is no longer diago-
nal (due to the
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T
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The final conditional that we will consider is
P (h | v) =
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where σ represents a logistic sigmoid. As with the con-
ditionals p(v | s, h) and p(s | v, h), the distribution of
h given v factorizes over the elements of h. Learning
and inference in the µ-ssRBM is rooted in the abil-
ity to efficiently draw samples by iteratively sampling
from the factorial conditionals P (h | v), p(s | v, h)
and p(v | s, h) with a Gibbs sampling procedure. In
training the µ-ssRBM, we use persistent contrastive
divergence (Tieleman, 2008) to update the model pa-
rameters.

Positive Definite Constraints

The conditional p(v | h) is only a well defined Gaus-
sian if the covariance matrix Cv|h is positive defi-
nite (PD). In order to ensure that, we need to con-



A Spike and Slab RBM Approach to Modeling Natural Images

Model Accuracy (%)
no PD, µ free, Φ free 73.10 ± 0.9
no PD, µ free, Φ = 0 71.43 ± 0.9
no PD, µ = 0, Φ free 71.19 ± 0.9
no PD, µ = 0, Φ = 0 68.92 ± 0.9
PD by Diag. W (Eqn. 6) 69.10 ± 0.9
PD by scal. mat. (Eqn. 5) 67.10 ± 0.9

Table 1. The performance of µ-ssRBM variants with 256
hidden. Lines labeled PD correspond to models that were
constrained to have “PD” precision of p(v | h) while the
lines labeled “no DP” are not. The notation µ = 0 corre-
sponds to models trained with µ fixed to zero. 95% confi-
dence intervals are given for each score assuming the official
test set size of ten thousand.
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We consider two options that are both shown to sat-
isfy the PD constraint. The most straightforward is to
restrict Φi to a scalar matrix, in which case:

Φij = ζij + α−1
∑
j
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where Wij is the jth element of filter Wi and Φij is
the jjth element of diagonal matrix Φi. Alternatively,
we could choose the following parametrization of Φi:

Φij = ζij + α−1DW 2
ij . (6)

Experiments

We evaluate the µ-ssRBM as a feature-extraction al-
gorithm by plugging it into the classification pipeline
developed by (Coates et al., 2010). In broad strokes,
the µ-ssRBM is fit to whitened ZCA (192-dimensional)
representations of 8x8 RGB image patches, and ap-
plied convolutionally. Classification was done with an
L2-regularized SVM, using p(h | v) extracted from ev-
ery 8x8 image patch.Prior to classification, our condi-
tional h values were spatially pooled into 9 regions.

It is possible to constrain Φ to enforce that Cx|h is PD
and achieve classification results that matches that of
the original (Courville et al., 2010) ssRBM (Table 1).
However if we take the same µ-ssRBM form and loosen
the PD constraint, the model performs better. Also of
note, is that both the µ and the Φ terms seem to con-
tribute approximately equally to improving the classi-
fication accuracy.

The best performing µ-ssRBM (1024 units, not 256 like
in the table) has an accuracy of 76.2 ± 0.9, per-
forming better than the most closely-related models
in literature (copied from (Ranzato & Hinton, 2010)):
the GRBM (59.7 ± 1.0) and mcRBM (225 factors;

Figure 1. Samples as in (Krizhevsky, 2010) from a convo-
lutionally trained µ-ssRBM exhibit global coherence, and
sharp region boundaries, a range of colours, and more
natural-looking shading than (Ranzato et al., 2010).

68.2 ± 0.9). Recent work by (Coates et al., 2010) has
shown that a K-means based approach out-performs
these energy-based approaches to feature extraction
on CIFAR-10, in the limit of a large hidden layer
(4000 units; 79.6 ± 0.9). With a smaller number of
elements in the representation, the µ-ssRBM model
outperforms the K-means-based approach: µ-ssRBM
with 256 units; 73.1 ± 0.9 while K-means with 400
units; 72.7 ± 0.9, and with 200 units 70.1 ± 0.9. We
believe the relatively poor performance of the RBM-
based models at the large hidden layer limit is due to
our inability to effectively train them.
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