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In recent years, manifold learning has become a popular tool for performing nonlinear dimension-
ality reduction. This has led to the development of a flurry of algorithms of varying degree of
complexity that aim to recover manifold geometry using either local or global features of the data.
Building on the Laplacian Eigenmap framework, we unify all these algorithms through the Rieman-
nian Metric g. The Riemannian Metric allows us to compute geometric quantities (such as angle,
length, or volume) on the original manifold for any coordinate system. This geometric faithfulness,
which is not guaranteed for most algorithms, allows us to define geometric measurements that are
indepent of the algorithm used, and hence seamlessly move from one algorithm to the next. A more
significant consequence of this geometric faithfulness is that it allows for regressions, predictions,
and other statistical anlyses to be conducted directly on the low-dimensional representation of the
data. If the geometry of the data were not fully and accurately preserved, these analyses would, in
general, not be correct.

Generally speaking, a manifold learning or manifold embedding algorithm is a method of non-linear
dimension reduction. Hence, its input is a set of points D = {p1, . . . pN} in R

n, where n is typically
high. The points D are assumed to be sampled from a manifold M ⊂ R

n which is equipped with
a Riemannian metric g. These points are mapped into vectors {f(p1), . . . f(pN )} ⊂ R

m, with
m � n, where f : M → R

m is assumed to be an embedding of M into R
m.

Defining an optimal embedding map f that retains as many features as possible from the orginal
data D while embedding the data in the space of lowest possible dimensions is the goal of manifold
learning algorithms. Unfortunately, these algorithms suffer important shortcomings, which have
been documented in [3, 4]. Two of the more significant criticisms are that 1) the algorithms fail
to actually recover the geometry of the manifold in many instances and 2) there is no coherent
framework in which the multitude of existing algorithms can easily be compared and selected for a
given application.

Much effort has been invested into finding manifold learning algorithms that “recover the geometry”.
In this work, we translate this vague notion in mathematical terms, equating it with the concepts of
isometry, isometric embedding, and pushforward metric. Not surprisingly, the majority of manifold
learning algorithms output embeddings that are not isometric.

In contrast to previous work in manifold learning, we take the following point of view: if recov-
ering the geometry is important, then instead of finding a single embedding algorithm that has this
property, we will provide for a way to augment any reasonable embedding algorithm with a Rieman-
nian metric represented in the algorithm’s own coordinates. This addresses the two main criticisms
of manifold learning algorithms referred to above, and offers a convenient framework for moving
between embeddings.

To acheive this, we set out to augment the coordinate representation f produced by any manifold
learning algorithm with the information necessary for reconstructing the geometry of the data. This
information is embodied in the Riemannian metric. Expressing the metric g defined on M on
N = f(M) is formally known as obtaining the pushforward of the metric g under map f .
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Pushforward Metric Let f be and embedding between Riemannian manifolds (M, g) and (N , h),
then the pushforward ϕ∗gp of the metric gp along f−1 = ϕ is given by

〈u, v〉ϕ∗gp
=

〈

df†
pu, df †

pv
〉

gp
,

for u, v ∈ Tf(p)N and where df†
p denotes the Jacobian of f−1.

In effect, recovering the pushforward of g under f redefines the inner product on the tangent spaces
Tpf(M) for every point p ∈ f(M), so that the traditional notions of Euclidean geometry of angles,
length, and volume on f(M) carry over from M.

To define ϕ∗gp for each point in D, we take advantage of the fact that the Laplace-Beltrami operator
∆M can be estimated from D [2]. The key point here is that the operator ∆M is coordinate free:
once estimated, it can be applied to any function on M, including coordinates. This applies to the
embedding map f , which is obviously defined on M. From the dependency of the Laplace-Beltrami
operator on g:

∆Mf =
1

√

det(g)

∂

∂xl

(

√

det(g)glk ∂

∂xk
f

)

. (1)

recovering ϕ∗gp follows from the following proposition:

Proposition 0.1

ϕ∗gij =
1

2
∆M (fi − fi(p)) (fj − fj(p)) |fi=fi(p),fj=fj(p) (2)

Proof To find ϕ∗g(p), the pushforward of g under f at point p, we apply (1) to the coordinate
products 1

2 (fi − fi(p)) (fj − fj(p)) for i, j = 1, . . . , d. By direct evaluation of the r.h.s. using (1),
we obtain

glk ∂

∂xl
(fi − fi(p)) ×

∂

∂xk
(fj − fj(p)) |fi=fi(p),fj=fj(p) = ϕ∗gij .

Figure 1 provides a demonstration of our method. Figure 1a displays a dome, on which we sample
2000 points uniformly, and trace a geodesic between fixed points on the manifold M. Figure 1b dis-
plays an embedding of this sample using the eigenmap [1], and traces the same geodesic, computed
by taking into account the Riemannian metric. The theoretical length of geodesic is π/2, with an
estimated geodesic of 1.56 on the original data, and 1.62 on the embedding. Thus, the embedding’s
relative error is 3.5%, despite the fact that the it is drawn on a much smaller scale and has an entirely
different shape than the original.
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Figure 1: a) Points sampled uniformly on dome with geodesic in black with red endpoints. b)
Eigenmap of the dome along with geodesic in black with red endpoints.
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