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Statistical machine learning focuses on non-parametric models that learn the minimum necessary to
perform the targeted discrimination. For instance, in a binary classification problem, SVMs will only use
the examples located within a boundary margin between the two classes to compute the optimal separation.
However, one can consider other discrimination settings that use the entirety of the data. We first review
four different discrimination settings, supported by the example in Figure 1. The task is to separate the ’+’
class from the ’-’ class. Training examples for each classes live in separate horizontal lines. Discrimination
always involves positive examples whose scores one wants to push up, and negative examples one wants to
push down. This can be expressed in a geometric framework, when one maximizes a separation margin, or
in a probabilistic framework, where all scores are normalized to sum to 1, and just pushing up the positive
ones necessarily pushes down the negative ones.
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Class discrimination The traditional discriminant setting is, given an input, to return a class. The system
is trained so that the score of the target class is larger than any other classes. In a probabilistic
framework, this can be achieved by maximizing, for target class c, the posterior P (c|x) = fc(x)∑

d
fd(x)

.

Commonly used scores are exponential linear fc(x) = expwc · x, resulting in a logistic regression
function. Similarly, in a geometric framework, one can maximize the width of the separation margin
between classes. This is shown as the diagonal separation plane in Figure 1.

Fisher discrimination The key idea, usually expressed in terms of intra-class variance minimization, is
to impose that the score, while providing proper separation, should have comparable values for all
examples in a given class. A typical geometric interpretation is to perform a least square regression to
the class labels, which is exactly equivalent to the Fisher discriminant [4]. In our example in Figure 1,
as class variances are minimized by a projection on the vertical, one obtains an horizontal separation
plane. Under the assumption that each class lives in a horizontal manifold, test example ’A’ is properly
classified as negative by the Fisher discrimination, while it is misclassified by the class discrimination.

Pairwise discrimination In a ranking setting, one would like to sort all the examples according to whether
they are relevant to class c or not. For bipartite ranking, where examples can be split into two
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sets, this can be achieved by maximizing the score difference for each positive-negative sample pair.
The proportion of pairs which are properly ranked corresponds the the Area under the ROC Curve
(AUC). A geometric interpretation leads a simple extension of SVMs (SVM Rank). In Figure 1,
a pairwise discrimination approach will enforces a “horizontal” ranking of the data. Knowledge of
the class priors (which is not required during training) makes it possible to draw a specific (nearly)
vertical separation plane (we show here two examples). While it ignores data distribution assumptions,
and would misclassify example ’A’, it is good at maximizing the precision over top ranked examples,
considering test example ’B’ as positive.

A new contribution proposed here is to provide a probabilistic interpretation through a Maximum
Entropy derivation that extends previous work on Boosting. Note both RankBoost and AdaBoost
optimize pairwise discrimination [5]. However, the normalization used during AdaBoost training is
tricky to interpret [3], as it requires the knowledge of the labels.

Density discrimination This fourth framework is little known, and leads to paradoxical remarks. For
identifying the examples that are the most likely to belong to a class, one should maximize the ratio
P (i|c) = fc(xi)∑

j
fc(xj)

. This can be interpreted as the probability to observe example i given class c.

Noting that P (x|c) =
∑

xi=x P (i|c), this scales as the likelihood ratio P (x|c)
P (x) . An exponential linear

form has been derived from the Maximum Entropy framework in [2].

At first, this approach seems to have the same qualities are pairwise discrimination: independence from
class priors, and good reranking performance using P (i|c). Surprisingly, the separation we obtained
for Figure 1 is close to horizontal (as with Fisher discrimination). However, it only enforces similar
scores for the positive class, which leads to the asymmetric separation observed in Figure 2.

We have reviewed four types of discrimination, using both geometric and probabilistic languages. Our
first goal is to help identify the optimal algorithm for a given task, while corroborating previous observa-
tions [1]. To guarantee a good precision for the top-scoring examples returned by the classifier, one would
prefer pairwise discrimination. Fisher discrimination should be considered when one wants to use more
knowledge about the data than simply the examples that live on the boundary (assume for instance teach
class lives in a separate manifold). Model-free estimates of the probability P (X|c) are obtained through
density discrimination (experiments suggest that traditional discriminant approaches are poor candidates).
We also hypothesize that if two algorithms perform the same type of discrimination with the same regular-
ization (L1 or L2), chances are that their performance will be very similar. For instance, for the same type
of discrimination, it seems that there is little difference between the logistic or the hinge loss (SVM).

Finally, our new contribution is a general framework based on Maximum Entropy that covers all four
types of discrimination. We will present in particular new connections between Pairwise, Fisher and Density
discrimination, that help understand how they differ.
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