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Introduction

In this work we consider the problem of efficient object-class recognition in large image collections. We
are specifically interested in scenarios where the classes to be recognized are not known in advance. The
motivating application is “object-class search by example” where a user provides at query time a small set
of training images defining an arbitrary novel category and the system must retrieve from a large database
images belonging to this class. This application scenario poses challenging requirements on the system
design: the object classifier must be learned efficiently at query time from few examples; recognition must
have low computational cost with respect to the database size; finally, compact image descriptors must be
used to allow storage of large collections in memory rather than on disk for additional efficiency.

Traditional object categorization methods do not meet these requirements as they employ high-dimensional
descriptors and they typically use non-linear kernels which render them computationally expensive to train
and test. For example, the LP-β multiple kernel combiner described in [2] achieves state-of-the-art accuracy
on several categorization benchmarks but it requires over 23 Kbytes to represent each image and it uses
39 feature-specific nonlinear kernels. Note that the use of this recognition model in our application would
require costly query-time kernel evaluations for each image in the database since the training set varies with
every new query and thus pre-calculation of kernel distances is not possible.

We propose to address these storage and efficiency requirements by learning a compact binary image
representation optimized to yield good categorization accuracy with linear (i.e., efficient) classifiers. The
binary entries in our image descriptor are thresholded nonlinear projections of low-level visual features
extracted from the image, such as descriptors encoding texture or the appearance of local image patches.
Each non-linear projection can be viewed as implementing a nonlinear classifier using multiple kernels. The
intuition is that we can then use these pre-learned multiple kernel combiners as a classification basis to
define recognition models for arbitrary novel categories: the final classifier for a novel class is obtained by
linearly combining the binary outputs of the basis classifiers, which we can pre-compute for every image in
the database, thus enabling efficient novel object-class recognition even in large datasets.

The idea of describing images in terms of basis classes is evocative of the use of attributes [1, 3] which
are fully-supervised classifiers trained to recognize certain properties in the image such as “has beak”, “near
water”. The recognition model for each class is then defined by hand-specifying its associated attributes.

The approach proposed here is most closely related to our prior work [5], where we have introduced the
“classeme” image descriptor for general class recognition: the entries of this descriptor are the outputs of
a large set of weakly-trained basis classifiers evaluated on the image. We have shown that linear classifiers
trained on classeme vectors can recognize novel classes with near state-of-the-art accuracy even when the
descriptor is compressed down to less than 200 bytes per image. In subsequent work [4], Li et al. have
proposed using the localized outputs of object detectors as image representation. The advantage of this
representation is that it encodes spatial information; furthermore, object detector are more robust to clutter
and uninformative background than classifiers evaluated on the entire image. These prior methods work
under the assumption that an “overcomplete” representation for classification can be obtained by pre-learning
classifiers for a large number of basis classes, some of which will be related to those encountered at test-
time. Such high-dimensional representations are then compressed down using quantization, dimensionality
reduction or feature selection methods in a stage subsequent the learning of the basis classifiers [5, 4].

Unlike prior work, where the basis classifiers are learned disjointly and each is optimized to recognize a
predefined basis class, we propose instead to jointly seek the basis classifiers such that linear combinations
of these classifiers yield optimal classification accuracy on a given training set. In other words, our basis
classifiers are recognizers of “abstract” (as opposed to predefined) object categories and they are collectively
trained to produce good classification when used as a basis in a linear combination. This allows us to de-
couple the number of basis classifiers from the number of categories in the training set and thus to learn
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the basis classifiers for any specified target dimensionality, without resorting to a subsequent suboptimal
compression of the descriptor. Finally, we learn all parameters with respect to the binarized outputs of the
basis classifiers, therefore solving for a compact binary encoding of the images. Our work shares similarities
with the approach of Weiss et al. [7] where binary image codes are learned such that the Hamming dis-
tance between codewords approximates the Euclidean distance between GIST descriptors. In contrast, we
seek binary codes such that a linear combination of the bits associated to an image can produce accurate
classification. Furthermore, our bits implement powerful non-linear projections of multiple low-level features.

Method

Let D = {(xi, yi)}
N
i=1 be the training set for learning the basis classifiers, where xi is the i-th image example

and yi ∈ {−1, +1}K is a vector encoding the category label out of K possible classes: yik = +1 iff the
i-th example belongs to class k. We extract 13 distinct low-level feature descriptors from each image,
corresponding to different spatial pyramid levels of GIST, HOG, SIFT and self-similarity features. Using
the closed-form explicit feature maps of Vedaldi and Zisserman [6], we map each descriptor to a higher-
dimensional space such that inner products in this space approximate the intersection kernel distances. Let
f̂ i be the vector obtained by concatenating the descriptors of image i after the explicit feature maps. We

then define our c-th basis classifier to be a boolean function of the form: h(f̂ i; ac) = 1[aT
c f̂ i > 0] where

1[.] denotes the indicator function. Note that h(f̂ i) ∈ {0, 1} computes a thresholded nonlinear projection of
the original low-level features. We train the basis classifiers by optimizing the following learning objective,
which is a trade off between a small classification error (when using the output bits of the basis classifiers
as features in a one-versus-all linear SVM) and a large margin:
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where C is the total number of basis classifiers to learn and l() is the traditional hinge loss function. Note
that the linear SVM and the basis classifiers are learned jointly. We minimize this error function by block
coordinate descent. Upon convergence, given an image with descriptor f̂ , we use the estimated parameters
a to calculate its binary basis classifier vector as [h(f̂ ; a1) . . . h(f̂ ; ac)].

Experiments

We learned basis classifiers with the approach described here and compared them with classemes trained with
the method of [5]. For both algorithms we used a training set of 200 ImageNet classes with 120 images drawn
from each class. We then extracted binary codes from Caltech256 images for both learned representations.
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Finally, we trained linear SVMs on these binary descriptors for Caltech256
multi-class classification, restricting our test to 50 classes. Note that the
ImageNet categories used to learn the basis classifiers are distinct from
the Caltech256 classes, which represent effectively novel classes to recog-
nize. The figure to the right reports the multiclass classification accuracy
obtained with these two 200-bit descriptors. We also include results pro-
duced when setting the number of basis classes to 96 (corresponding to
binary codes of only 12 bytes): while our approach can accommodate eas-
ily the case were the number of basis classes is different from the number
of training categories, the classeme learning method of [5] requires a subse-
quent feature selection step which, as seen in the figure, greatly degrades its classification accuracy. Although
the number of basis classes used in this toy experiment is too small to produce state-of-the-art accuracy, we
believe that our significant relative improvement over [5] will carry over when larger training sets will be used.
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