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Recurrent Neural Networks (RNN) encode a non-
linear transformation of the input history into
their hidden state, making them an ideal tool
for modelling complex temporal structure. Un-
fortunately, most training algorithms for RNNs (
Back propagation Through Time (BPTT) (Rumel-
hart et al., 1986), Real Time Recurrent Learn-
ing (RTRL)(Williams & Zipser, 1989), Extended
Kalman Filter methods (EKF) (Puskorius & Feld-
kamp, 1994)) are based on gradient descent and
therefore suffer from the vanishing gradient prob-
lem(Bengio et al., 1994). Simply stated, this means
that such training algorithms are not able to dis-
cover long-term dependencies, because the gradients
go exponentially to 0 as they travel back in time,
when the network is stable enough to encode infor-
mation for a long time.

There have been several attempts to overcome the
vanishing gradient problem by either replacing the
gradient based learning with approaches inspired by
random search or simulated annealing (Bengio et al.,
1994), or by changing the connectivity pattern of the
recurrent weights such that the gradients can flow
back in time (ElHihi & Bengio, 1996), (Hochreiter
& Schmidhuber, 1997). We propose yet another so-
lution that looks at how to modify the gradients such
that the network learns to look far into the past.

If we define J (k) as in equation (1), then we can write
the gradients of the cost C with respect to W (the

recurrent weights of the RNN) as ∂C
∂W

=
∑T

t=0
∂C(t)
∂W

,

where ∂C(t)
∂W

is defined in (2), Pt(k) is given by (3)
and x is the hidden state.
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The sum in (2) is over past hidden states (up to time
t). The terms for which k is close to 0 represent
short-term dependencies, while when k is close to t

the terms contain long-term contributions. The k-th
term is weighted by Pt(k). Gradients can vanish if

the singular values of Pt(k) are < 1: |Pt(k)∂x(t−k)
∂W

|
goes exponentially fast to 0 (or ∞) as k increases.
What we would prefer, in order to model long-term

dependencies, is to allow all terms ∂x(t−k)
∂W

to con-

tribute about equally to ∂C(t)
∂W

. For this we need all
Pt(k) to be norm preserving matrices and this can
be achieved if all J (k) have the same property.

An intuitive way of understanding the vanishing gra-
dient problem is to see J (k) as a function of the input
(over which we have no control) and W . As a min-
imum requirement for J (k) to be close to a rotation
matrix, we need the largest singular value of J (k) to
be close to 1 (there needs to be at least one direction
in which J (k) is not damping). If there are singular
values of J (k) greater than 1, it will sometimes be
expanding, possibly making the singular values of
Pt(k) go to infinity, and the network response un-
stable (e.g. not robust to noise), and learning fails.
But having singular values of J (k) smaller then 1
means that all J (k) will be damping. This ensures
that the training is stable, but also that for a large k,
|Pt(k)| is virtually 0 and all long-term dependencies
are ignored.

Regularizing the recurrent neural network to

achieve norm-preserving Jacobians. This vi-
cious cycle can be broken if we add to the train-
ing criterion a regularization term, reg(θ), where θ

stands for the parameters of the model, encourag-
ing the Jacobian J (k) to preserve the norm of the
vectors it is applied to. Defining reg is not easy
because computing the Jacobians J (k) directly, let
alone different constraints on them, is computation-
ally prohibitive. We propose instead a regularization

(see equation (4)) expressed in terms of ∂C(k)
∂h(k) and

z(k) = ∂C
∂h(k) (values which must already be com-

puted for BPTT). Note that by minimizing reg(θ)
as defined in (4), we enforce the ratio between the
norms to be 1, which is true if J (k) is a rotation
matrix.
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Computing gradients through reg can be done easily
and efficiently if an automatic differentiation tool is
used. In our experiments we use Theano (http://
deeplearning.net/software/theano/), which not
only does automatic differentiation but it also opti-
mizes the computations for optimal performance as
well as it provides a transparent way of making the
code GPU-friendly.

Results. The task we are addressing is that of mem-
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Figure 1: Results on sequences of length 100. Row (1) shows results for a RNN trained on squared error,
while row (2) shows results for RNN trained on squared error plus the regularization term. Column (a)
shows the evolution of squared error during training, column (b) shows the value of |PT (k)| for all values of
k before training ( blue continuous line) and after training ( red dashed line) and column (c) the evolution

of
∑T

k=0 |PT (k)| during training (showing the cumulative gradient over different durations).

orizing a number for a long period of time. The
input to the RNN is a 1-dimensional time-series of
100 steps which is always 0 except for a spike of ran-
dom amplitude in (0, 1] at position 4. The cost is
defined only on the last time step of the output in
the form of the squared error between the output
and the target (the amplitude of the spike). In or-
der to be able to solve the task, the only difficulty
the network has to overcome is that of the gradients
being able to travel sufficiently far into the past to
see the spike.

Figure 1 shows results of a RNN trained only on the
squared error cost (row (1)) and on the regularized
cost (row (2), the regularization term is weighted by
0.01). In both cases W starts as a damping matrix,
making |PT (k)| to go exponentially to 0. Because of
this the training algorithm is unable to see the spike
initially. Without the regularization, the network
has no incentive to increase the magnitude of PT (k),
since this will not directly reduce the error, and as
such the network is not able to solve the task. With
the regularization, the magnitude of PT (k) slowly
grows allowing the network to solve the task.
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