
 

Many scenes in surveillance, sports, and other video domains involve complex multi-agent activities where the 

agents co-exist and are interacting in a time-varying manner. For example, in the surveillance domain one person 

may open a door of a vehicle so another person can load an object before they both enter the vehicle. Similarly, team 

sports involve multiple players acting in a coordinated manner. Our goal is to model and recognize such coordinated 

activities in video by capturing the most discriminative Granger causal relationships between pairs of time 

sequences extracted from event-clusters. An activity is represented as a collection of event-clusters that can be 

instantaneous or occur over a period of time. And, loosely speaking, Granger causality,[1], is an explicit measure of 

one temporal sequence’s influence on another and is therefore ideal for explicitly capturing the causal relationships 

between agents. 

 

The overall training approach is shown in 

Figure 1, where the feature data from the 

activity classes are automatically clustered 

using a hierarchical divisive clustering 

algorithm. Activity profiles are then 

extracted from each event-cluster by 

accumulating counts of moving-object-

detections (MOD) from agents as they pass 

through each cluster. The pair-wise causal 

strength of the event-cluster activity 

profiles are then calculated using the 

continuous time version of the Granger 

Causality (GC) test, [2]. The GC statistic is 

then converted to a probability that represents the strength or weight of the GC links in order to obtain a measure 

that can be compared using distance metrics.  The GC weights are used as features in an Adaboost temporal link 

selection algorithm while the activity profile is used in the Adaboost node selection algorithm. The resulting 

discriminative nodes and links completely define the DBN structure, where further refinement using a Structure 

Expectation Maximization (SEM) algorithm, [7], only decreases the classification performance. During testing 

unknown activities have features from their agents assigned to the event-clusters, which are then accumulated into 

activity profiles. Quantized versions of these activity profiles are used during inferencing as observations in the 

models, where the activity is classified with the label of the most likely model. 

 

This work has several contributions that lead to more efficient and discriminative DBN models, resulting in 

improved classification performance. First, using the Granger statistics as a feature allows the temporal links in the 

DBN to be explicitly determined.  Typically, score based [6,7,8,12]  or constrained based [9,10,11] methods are 

used to determine the model structure; however, these either attempt to optimize the model fit to the training data, 

are independent of the classification performance, or require domain knowledge experts to define constraints.  The 

approach used here is a constrained based approach that is automatic and unsupervised, where the constraints are 

learned from the data, not a domain expert. 

 

The second contribution is that the Granger statistics are combined with an Adaboost feature selection algorithm in 

order to automatically define the number and type of the most discriminative nodes and temporal links in the 

GCDBN. This approach also removes any dependence on domain experts for applying constraints and speeds up the 

structure learning process by explicitly defining a smaller structure that is much closer to the desired structure.   

 

 
Figure 1, Overall approach flow chart for modeling complex activities 

using Granger Constraints 
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The first well known graphical model for capturing the interactions of objects in activity recognition is the CHMM, 

[3]; which treats parallel and co-occurring agents as layers of Hidden Markov Networks (HMMs) that are fully 

coupled. The next evolutionary step is the Dynamic Multi-Linked HMM (DML-HMM), [6]. The DML-HMM is a 

data-driven approach for defining the temporal links between layers of HMMs using the SEM learning algorithm. 

This approach improves the computational burden by reducing the number of temporal links and allows the models 

to capture only the interactions that are represented by the current classes’ data. But, as with the CHMM, it is 

computationally intractable for a larger number of events, forces all models to have the same number of events, and 

the links are independent of classification performance. On the other hand, the Time Delayed Probabilistic Graphical 

Model (TDPGM), [12], is the current state-of-the-art in this area and is a nice solution for automatically determining 

the spatial links in a graphical model based on the Time Delayed Mutual Information (TDMI) measure. The use of 

the TDMI in the TDPGM will detect the causal progression of a single agent between events or nodes, but does not 

capture the causal relationships with other co-occurring agents and is not designed to improve classification 

performance. The TDPGM also uses Prim’s minimum spanning tree algorithm, [13], to determine the existence of a 

link, where the TDMI measures are the link weights.  This automates the selection process; but also forces an initial 

tree structure onto the network while restricting the links based on its noncyclical nature.   

  

Experiments are performed using our own synthetic data as well as real Handball data from the CVBASE06 dataset, 

[14].  The GCDBN is compared against a Time-Delayed DBN (TDDBN) that uses TDMI and Prim’s algorithm 

from the TDPGM model to define the temporal links of a DBN. Results on the 5 classes in the synthetic data show 

that the GCDBN achieves an average probability of correct classification (Pcc), over 5-folds of a cross-validation 

analysis, of 73%, while the TDDBN achieves 56%.  The GCDBN’s higher performance can be contributed to the 

discriminative nature of the chosen temporal links, being able to establish causal relationships between all agents via 

the Granger Causality statistic, and the fact that there are no acyclic or tree requirements in the temporal link 

network. The 5 classes in the handball data are more separable than the classes in the synthetic data resulting in an 

average Pcc of 83% for the GCDBN.  
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