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We introduce a new online reinforcement learning (RL) method called least-squares
action preference learning (LS-APL) for learning the near-optimal policy in Markovian
decision processes (MDPs) (Bertsekas, 2007). Online RL aims at learning a policy to control
a system in an incremental fashion, such that some measure of long-term performance is
maximized by that (optimal) policy. A typical setting where online RL operates is as
follows: Given the state x and the behavior policy π̄ the controller calculates a control
action a which is sent back to the system. The system then makes a transition to the new
state x

′ and issues a control feedback (reward) and the cycle is repeated. The learning
problem is to gradually improve the estimate of optimal control based on a history of
observations (state-action-reward).1 Although many online RL algorithms with various
levels of success have been proposed during last 20 years (Maei et al., 2010; Melo et al., 2008;
Szepesvari and Smart, 2004), we know of no theoretical guarantee in terms of performance
loss for general function approximation. This paper provides an asymptotic performance
guarantee for online RL, relying on a new variant of dynamic programming (DP) for
iterating the control policy.

Dating all the way back to Boyan (1999) the least-squares regression (LS) has been
widely used to scale up reinforcement learning algorithms to large state-action prob-
lems (Szepesvari, 2009; Munos and Szepesvári, 2008; Lagoudakis and Parr, 2003). Among
several least-squares RL, least-squares fitted Q-iteration (LSFQI) and the least-squares
policy iteration (LSPI), have gained attraction of many theoreticians. The asymptotic
as well as the finite-time behavior of these algorithms have been throughly analyzed for
both parametric and non-parametric type of function approximation (massoud Farahmand
et al., 2008; Antos et al., 2008, 2007). For both LSFQI and LSPI one can show that
the asymptotic loss compared to the optimal policy converges to zero provided that the
function space grows by the number of samples in a controlled fashion. However, the fact

1Note that, in general, the behavior policy is not required to follow the latest estimate of the optimal

policy. However, to maximize the long-term performance online RL methods often rely on this estimate for

decision making.
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that the quality of these performance loss bounds depends on the number of samples per
iteration and not the total number of samples, see Munos and Szepesvári (2008), makes
it difficult, if not impossible, to apply these results for online applications, since, in online
problems, we typically have limited sampling and computational budget per iteration.

One approach to dealing with this issue may involve looking for a kind of performance-
loss bound that relaxes dependency on estimation error. A potential solution may be found
in very recent work by massoud Farahmand et al. (2010) that establishes a new fine-time
performance loss bounds for approximate policy iteration (API) and approximate value
iteration (AVI)(Bertsekas, 2007). This new result shows that the contribution of approx-
imation (estimation) error to performance loss is more prominent in latter iterations of
AVI/API algorithm and the effect of an error term in early iterations decays exponentially
fast. In other words, it is better to put more effort on having lower approximation error at
later iterations of API/AVI. In sampling-based algorithms like LSFQI and LSPI, this can
be done by gradually increasing the number of samples throughout iterations.

We take a different approach to reduce the sample complexity based on a new variant
of dynamic programming (DP) algorithm called dynamic policy programming (DPP)(Azar
and Kappen, 2010). LS-APL can be characterized as a sampling-based version of DPP with
least-squares regression, for which we establish asymptotic performance loss compare to the
optimal policy. Given the existence of an upper-bound for the approximation error of DPP
operator, we prove that the asymptotic performance loss of LS-APL is bounded with prob-
ability (w.p.) 1 by some finite value. The bound is similar to those of LSFQI/LSPI (Antos
et al., 2008, 2007) in many respects. The key difference is that, to achieve non-trivial
performance loss bound w.p.1, LS-APL requires a finite number of samples per iteration,
whereas LSFQI/LSPI require infinitely many samples throughout iterations. This result is
applied to online settings, where the learning algorithms can only make use of few samples
at each step of learning.

Our analysis is based on the observation that the performance loss of DPP depends on
some measure of average of approximation (estimation) error instead of max-norm error
in the case of AVI and API. The idea is to show that for LS-APL variant of approximate
DPP this average normed-error concentrate around a value which is bounded by some
approximation error of DPP operator which depends on the capacity of function space.
For measure concentration, we rely on the recent results from the Martingale difference
processes literature concerning the concentration measure of the function of strongly de-
pendent random processes (Kontorovich and Ramanan, 2007).
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