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Université de Montréal
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1 Introduction

A fundamental challenge for AI has always been to be able to gather, organize and make intelligent use of the colossal
amounts of information generated daily (Davis et al., 1993). Recent developments in this area aim at building large
web-based Knowledge Bases (KBs), special kinds of relational databases especially designed for knowledge manage-
ment, collection, and retrieval. Thanks to long-term funding efforts or collaborative processes, promising progress
has been accomplished and several KBs, which encompass a huge amount of data regarding general and specific
knowledge, are now readily available on-line. Examples are OpenCyc, Freebase, WordNet, DBpedia, etc.

These KBs have been conceived for differing purposes, such as approaching human-like reasoning, producing an
intuitively usable dictionary and thesaurus or proposing a global on-line information resource for semantic web ap-
plications. However, their highly-structured and organized data could also be useful in many other AI areas such as
Natural Language Processing (NLP), for word-sense disambiguation or natural language understanding, in computer
vision for scene classification or image semantic annotation, or in collaborative filtering. Even if WordNet is widely
used in NLP (e.g. in (Snow et al., 2007)), this remains a small contribution compared to what could be achieved with
such gigantic knowledge quantities. This could be explained by the fact that it is usually hard to take advantage of
KBs data in other systems. Indeed, their underlying symbolic frameworks, whilst being very efficient for their original
purposes, are not flexible enough to be fruitfully exported, especially to statistical learning approaches.

This work studies an original way of leveraging the structured data encompassed by KBs into statistical learning
systems. Our work is based on a model that learns to represent elements of any KB into a relatively low (e.g. 50)
dimensional embedding vector space. The embeddings are established by a neural network whose particular architec-
ture allows to integrate the original data structure within the learnt representations. This new framework is appealing
for several reasons: it is flexible (simple to adapt to many KBs), compact (only a low-dimension vector per entity
and a low-dimension matrix per relation type to store) and also exhibits generalization ability (the ability to infer new
relations from existing ones). Moreover, such representations potentially allow integration of KBs within systems of
the recent machine learning trend of Deep Learning, e.g., those applied to NLP (Collobert and Weston, 2008).

2 Structured Embeddings

This work considers Knowledge Bases as graph models. This means that the data structure of KBs is not necessarily
hierarchical, and is just defined by a set of nodes and a set of links. To each individual node of the graph corresponds
an element of the database, which we term an entity, and each link defines a relation between entities. Relations are
directed and there are typically several different kinds of relations. In the following, a relation is denoted by a triplet
(el, r, er), where el is the left entity, er the right one and r the type of relation between them.

Our structural embedding of KBs is based on 2 main ideas. First, entities can be modeled in a d-dimensional vector
space, termed the “embedding space”. The ith entity is assigned a vector Ei ∈ R

d. Second, within that embedding
space, for any given relation type, there is a specific similarity measure that captures that relation between entities. For
example, in WordNet, the part of relation would use one measure of similarity, whereas similar to would use another.
Note that these similarities are not generally symmetric. We model this by assigning for the kth given relation a pair
Rk = (Rlhs

k , Rrhs
k ), where Rlhs

j and Rrhs
j are both d × d matrices. The similarity function for a given entity is thus

defined as Sk(Ei, Ej) = ||Rlhs
k Ei−Rrhs

k Ej ||p, using the p-norm ( we chose p = 1 for the simplicity of the associated
gradient learning). In other words, we transform the entity embedding vectors Ei and Ej by the corresponding left
and right hand relation matrices for the relation Rk and then similarity is measured according to the 1-norm distance
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Table 1: Ranking. Predicted ranks on WordNet (55,166 candi-

dates) and Freebase (81,061 candidates).
WordNet Freebase

rank el rank er rank er

COUNTS Train 662.7 804.1 541.8
Test 6202.3 5894.2 804.9

EMB Train 16.2 23.3 –
Test 3414.7 3380.8 –

EMBMT Train 13.6 20.9 2.9
Test 97.3 223.0 317.2

EMBMT +KDE Train 11.8 19.9 1.6
Test 87.8 192.5 314.5

Table 2: Generalization . Lists of e
r predicted using

EMBMT +KDE after training on WordNet. We removed from the

lists all elements from the training set: the predictions below are

generalized by the system.

el everest 1 brain 1

r part of has part

er north vietnam 1 subthalamic nucleus 1
hindu kush 1 cladode 1
karakoram 1 subthalamus 1

federal 2 fluid ounce 1
burma 1 sympathetic nervous system 1

in the transformed embedding space. The entities embeddings E and the relations operators (Rlhs, Rrhs) are learnt
with a neural network, which can be seen as a generalization of a siamese network (Bromley et al., 1993). Note that
E is learnt via a multi-tasking process because a single embedding matrix is used for all relations.

Unfortunately, this approach has the weakness that it somewhat dilutes some crucial information given by the KB
data: training triples are true facts, for which we have a high degree of certainty. So, after training the structured
embeddings, we propose to estimate the probability density at any point of the defined embedding space using Kernel
Density Estimation (KDE). Because KDE bases its estimation on the training points, this guarantees that they get a
high probability density, which is exactly what we are looking for.

3 Empirical Evaluation

Ranking The quality of our representations can be assessed using the following ranking task: for triplets (el,r,er),
we remove el (or er), and record at which position it would be ranked by the system, among all possible entities.
This setting somewhat corresponds to question answering. We compare our method, denoted EMBMT +KDE, with 3
counterparts which rank triplets with different procedures: EMBMT which uses the same embeddings but performs
ranking without KDE, EMB which also ranks without KDE but using embeddings learnt without multi-tasking (a
different E per relation type) and COUNTS which does not perform any learning but only counts the number of times
pairs (el, r) and (r,er), for all el, r and er, appear in the training set. We use data from 2 KBs: WordNet which contains
55,166 entities, 11 relation types, 164,467 training triples and 4,000 testing triples, and Freebase which contains 81,061
entities, 13 relation types, 356,517 training triples and 4,000 testing triples.

Results of Table 1 show that EMBMT and EMBMT +KDE perform best. As expected KDE helps on training examples.
The rank is almost perfect on Freebase and the values are misleading on WordNet. Indeed, the correct answer is not
ranked on top all the time because some other training triplets happen to be as correct as the considered test example:if
training examples are removed from the lists, the ranks on WordNet become 1.1 and 1.3. Hence, KDE achieves its
goal since EMBMT +KDE replicates (almost) perfectly the training KB.

Generalization COUNTS can record some information about training examples but can not generalize. To some
extent, EMB exhibits the same behavior since it can almost replicate the training set, but is bad on test triplets. Since
both EMBMT and EMBMT +KDE perform much better on test examples, we deduce that generalization can only be
possible via multi-tasking. This allows to encode information coming from different relations in the embeddings of
entities, which can then be exploited by relation operators. This is a kind of analogy process which seems to be more
efficient on WordNet than on Freebase because the same entities appear in more different types of relations. Table 2
illustrates this a bit more by displaying top ranked entities for 2 WordNet relations. Since we removed any training
examples from these lists, these are analogies performed by the system. The chosen entities are not always exactly
correct but do make sense most of the time.
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