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Many applications such as protein folding and stereo vision can be described using graphical models,
where interactions between variables correspond to hyperedges in the graph. In these applications one is
usually interested in computing the best configuration of the variables, usually referred to as the maximum a-
posteriori (MAP) assignment. When dealing with discrete variables graphical models encode the complexity
of NP-hard problems. When the variables are continuous only local minimum can be recovered in general.

Existing approaches for graphical models over continuous variables are Gaussian belief propagation for
quadratic programs [1] as well as non-parametric belief propagation [6] and particle belief propagation [3]
for general programs. The latter two frameworks lack optimality guarantees, i.e. even if these algorithms
converge there is no guarantee that their solution recover the MAP assignment. Recently, optimality guar-
antees were given for a family of convex belief propagation algorithms for discrete sets [5, 2]. However, some
of the optimality guarantees do not hold for general programs.

In this paper we propose to use duality to extend convex max-product to deal with compact spaces, i.e.,
mixtures of discrete and continuous bounded variables. Our algorithm is guaranteed to converge, but more
importantly we derive the theoretical conditions under which it is guaranteed to obtain the optimal MAP
assignment. The resulting messages are continuous functions. We derive different message representations
and demonstrate the effectiveness of our approach in the task of protein folding and show that our approach
significantly outperforms particle max-product and performs comparable to the state-of-the-art.

We are interested in graphical models whose variables are either discrete and bounded continuous. These
graphical models typically consider functions defined on a single variable which correspond to the vertices
in the graph, i.e., 6;(z;), and functions of the form 6,(x,) which are defined over subsets of variables
a C {1,..,n} and correspond to the graph hyperedges. A general graphical program has the form:

argmax Z 0:(x;) + Z Ou(za). (1)
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The main problem when using the convex max-product for general programs is recovering the MAP
assignment from the algorithm’s output. Here, we use the duality between continuous functions and regular
Borel measures over compact spaces to show that convex max-product can recover the optimal MAP assign-
ment when dealing with compact spaces. This is not very restricted since a wide range of applications can be
solved in such spaces. In order to describe the duality framework for optimizing (1) we first transform this
program into a continuous linear program with non-convex constraints, and then derive its dual. We show
that the dual optimal solution can be obtained using convex max-product and derive the sufficient conditions
for optimality, as well as for recovering the MAP assignment. Let K; be the compact set of z; and let K,
be the cartesian product of the compact sets K; over i € N(a). The objective in (1) can be described by a
linear function of the form >’ (0a,-) +>,(0;,-). The continuous linear functions over 6, 6; are identified
with the set of regular Borel measures over the compact sets K, and K;. We use point mass measures, i.e.,
probability measures that concentrate all their weight on a single point, to formulate the program in (1) as

max Y (fa,da) + 3 (05, ) (2)

subject to: Vi, ;a0 € N(i),/ Oa (o) = 6;(x;) d;, 04 are point mass probability measures.
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We have traded the computational complexity of the objective in (1) with the one of the feasible set in (2),

thus the computational complexity remains high. As the set of all point mass measures is not convex, this

linear program cannot be efficiently solved in general. We convexify the program by constructing its dual:

1isa) = Lo M, exy {0al@a) + Diena Mioval@i) |+ X maxa,cre, {0:(0) = aen Aiovalz:) | and
derive optimality conditions for the recovery of the MAP assignment in (1).



Protein [ length [ #tem | MODELLER [ PBP | Ours |

T0437 99 1 61.6 32.7 | 60.9
T0451 133 2 64.3 27.8 | 67.1
T0464 89 1 42.3 28.7 | 44.1
T0471 133 2 57.1 31.2 | 57.9
T0473 68 1 90.4 42.1 | 88.9
T0522 134 2 94.4 324 | 93.2
T0562 123 1 33.5 25.5 | 35.7
T0574 126 2 55.1 31.2 | 57.8
T0579 124 1 42.9 26.8 | 44.1
T0592 144 2 73.5 25.8 | 72.3
T0606 123 1 69.5 32.6 | 69.1
T0610 186 1 69.8 28.7 | 66.2
T0622 138 2 60.5 30.5 | 62.5
T0630 132 1 54.4 22.8 | 56.2

lctf 68 1 73.1 29.3 | 74.7
4icb 76 2 49.2 246 | 54.4
2cro 65 1 84.2 36.2 | 83.6

1fc2 43 1 64.2 279 | 67.8
2gbl 56 1 86.7 40.1 | 87.0
lenh 54 1 88.2 43.0 | 87.9

Table 1: Comparison to the baselines on 20 proteins ranging from 43 to 186 nodes and 788 to 16833 cliques.

Claim 1 Let X7 = argmaz, {0;(xi) =3 cn) Aisa(@i)} and X5 = argmaz, {06(2a)+3 e n(a) Nisali)}-
If there exist probability measures by, b; whose supports are contained in X7, X and they agree on their
marginals, then the continuous functions Ai—q(x;) are dual optimal. If by, b; are point mass distribution then
they point towards an optimal MAP assignment. In particular, if the functions 6;(z;) — ZaeN(i) Xissa (i)

have no ties then x7, ...,z is the MAP assignment.

The main computational difficulty in applying message-passing to compact Euclidean sets is that the
messages are continuous functions over K;. We consider two types of message representations: The first one
is inspired by particle approaches, where the messages are represented by their value on a dynamic set of
points. The second representation is a multi-grid method where the space is partitioned into disjoint sets,
on which the messages have a piecewise constant representation. While the former is very efficient only the
latter conserves the theoretical guarantees.

We demonstrate the effectiveness of our approach in the task of template-based protein folding which
can be formulated as a hybrid problem where continuous variables represent 3D locations of the C, atoms in
the backbone, while discrete variables represent the choice of template. As shown in Table 1, our approach
significantly outperforms particle max-product. We also show that while using a very simple energy function
based on distance constraints between pairs of C,, atoms, we perform comparably to the state-of-the-art, i.e.,
MODELLER [4], which takes into account a larger set of physical constrains derived from prior knowledge.
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