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Abstract 

Inverse reinforcement learning techniques (IRL) (Ng & Russell, 2000) provide a foundation for detecting 

abnormal agent behavior and predicting agent intent through estimating its reward function. 

Unfortunately, IRL algorithms suffer from the large dimensionality of the reward function space. Many 

applications that can benefit from an IRL-based approach to assessing agent intent involve a domain 

expert or analyst. This paper proposes a procedure for scaling up IRL by eliciting good IRL basis 

functions from the domain expert. 

 

1 Introduction 

Analyzing large volumes of intelligence data has become an overwhelming task. The mountains of data 

are a good match for data-hungry machine learning algorithms, presenting automation opportunities. The 

center of focus in intelligence and surveillance (ISR) is the behavior of people, who are often well 

approximated by the rational agent assumption. Inverse reinforcement learning (IRL) methods learn the 

reward function of an agent from past behavior of the same or similar agent and thus provide means for 

detecting “abnormal” behavior. Once the reward function is approximately known, solving a form of 

MDP will predict agent’s actions. Unfortunately, IRL algorithms suffer from the large dimensionality of 

the reward function space. 

The traditional solution is to approximate the reward or value function by a linear combination 

of basis functions, which transforms the problem into one of designing a compact set of good 

basis functions. Basis functions here fill the role that features play in supervised learning, that is, mapping 

the perceptual space into a simpler decision space.  Applying experience from the DARPA Bootstrapped 

Learning program, whose hypothesis is that it should be easier to learn from a benevolent teacher than 

from the open world, we design a procedure for eliciting the basis functions from the domain expert – the 

analyst. Starting with a minimal set of basis functions, the system presents the analyst with anomalies 

which the analyst then typically explains away by indicating domain features that the  

algorithm should have taken into account. The value function approximation basis is expanded and the 

process iterates until only true positives remain. 

We applied our proposed technique to Moving Target Indicator (MTI) data. MTI is an application of 

Doppler radar which allows simultaneous tracking of multiple moving objects, typically vehicles. 

 

2 Approach 

We employ the IRL paradigm to characterize the behavior of a class of agents compactly, by means of 

bounds on the reward function. The principal difficulty of IRL is the dimensionality of the reward 

function space. Traditionally, the dimensionality is reduced by assuming a linear approximation to the 

reward function 

 



The optimization problems are then greatly simplified and the difficulty shifts into finding good basis 

functions .  

 

We test our approach on a collection of GMTI (Ground Moving Target Indicator) data. MTI indicator is a 

technology based on Doppler or synthetic aperture radar which is capable of capturing movement tracks 

of a large number of vehicles simultaneously. The data is discretized into a grid and mapped onto nodes 

of a state space graph, where each grid cell corresponds to a node as shown in Figure 1. Cells that were 

never occupied are discarded to reduce the state space. For simplicity and to avoid data sparsity 

problems, we assume that all observed action sequences were performed by agents that share the reward 

function (a class of identical agents). 
 

Further simplifying assumptions that assure tractability are 

determinism in action outcomes and perfect rationality. This creates 

a very simple problem solvable using pure linear programming as 

opposed to a more complex gradient descent learning procedure that 

arises when a distribution is placed on behavior that penalizes for 

deviation from optimal action, e.g. as in (Ziebart et al., 2009). 
 

In order to have a compact yet representative feature set, the best 

solution is to build the basis function from the domain expert’s 

knowledge. However, domain experts are rarely inclined to build 

mathematical abstractions of what they view as common sense 

knowledge. A novel aspect of our work is that we elicit this 

knowledge in the course of a natural problem-focused “dialog” with 

the domain expert. The analyst observes the alerts that the system 

produces and either acts on the true positives, or has the option to 

explain to the system why the alert is false.  When the analyst provides an explanation, a new basis 

function is created and the learning problem is repeated. The analyst also has the option of excluding the 

example (action sequence) from learning as “agent in a different class”.  

 

The mechanism for detecting anomalies relies on estimating the reward function of a single agent 

represented by the track. Tracks are processed in an online fashion. If no reward function can make the 

behavior consistent with the reward bounds derived from previously seen tracks, an alert is created. This 

will be detected simply by the corresponding linear program being infeasible. Otherwise, the track is 

added into the repository. An alert can also be created if the reward function satisfies interestingness 

criteria predefined by the analyst. 

 

Example. In the schematic of Figure 2, two vehicles come into the 

area, briefly stop at an intersection, and continue their travel. The 

system flags their meeting as intentional, rather than coincidental, 

because travel incurs a positive cost and shorter routes to their 

destinations exist. When presented with the alert, the analyst 

considers the tracks and dismisses the alert, using a menu interface to 

specify that “it is relevant that the meeting point is at a gas station”. 

This creates a new basis function which takes on a high value at any 

gas station and will explain away further false alerts of a similar 

nature. To create a basis function, one of a number of templates is 

selected and parameterized; e.g. a Gaussian  function where the 

standard deviation is the parameter, and centered on the feature of 

interest (e.g., the market).  Note that this example requires that the 

analyst previously specified a concept of meeting through a basis function expressing proximity. 

Figure 2. Actions of two vehicles that stop 

at the same time at a certain location. 

Figure 1. A state space of the IRL 

problem for the GMTI task, with state 

visitation frequencies. 
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