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Count-Min (CM) sketch [2] is a compact summary data structure to store the frequencies of all items in the

input stream. It uses hashing to map frequency of an item onto a small sketch without explicitly storing the item

itself. CM sketch is a two-dimensional array with width w and depth d. The user chosen parameters ε and δ
determines the width and depth of the two-dimensional array: w= 2

ε and d=log( 1
δ
). ε controls the amount of

tolerable error in the returned count and δ controls the probability with which the returned count is not within this

acceptable error. The depth d denotes the number of pairwise-independent hash functions. Each of these hash

functions hk:{x1 . . .xN} → {1 . . .w}, 1 ≤ k ≤ d, takes an item from the input stream and maps it into a counter

indexed by the corresponding hash function. For example, h2(x) = 5 indicates that the item “x” is mapped to the

5th position in the second row of the sketch. The space used is O(wd) that is sub-linear in the size of input.

Update Procedure: When a new item “x” with count c, the sketch is updated by: ∀1≤ k ≤ d

sketch[k,hk(x)]← sketch[k,hk(x)]+ c

Query Procedure: Since multiple items can be hashed to the same position, the stored frequency in any one

row is guaranteed to overestimate the true count. Thus, to answer the point query, we return the minimum over all

the positions indexed by the k hash functions. The answer to Query(x) is: ĉ = mink sketch[k,hk(x)].
There is a variant of CM sketch with conservative update (CU sketch) [2, 5] that is similar to CM sketch except

the update operation. It is based on the idea of conservative update [3] introduced in the context of networking.

Lossy Conservative Update (LCU) sketch Prior work using CU sketch [5] shows that this method is more

prone to over-estimation error on low-frequency items. However, in many Natural Language Processing (NLP)

applications, items frequently follow a Zipfian distribution, and hence making an error on low-frequent items

can be problematic. In addition, if counts of low-frequent items are over-estimated, their association scores like

Pointwise Mutual Information (PMI) becomes high too as PMI is sensitive to low-frequency item counts [1].

To overcome this problem, we combine the idea of lossy counting [7] on top of CU (LCU) sketch. We

conceptually divide the stream into windows, each containing 1/γ items. We fix γ such that size of each window

is equal to size of the sketch i.e. O(wd). In future, we will explore other settings of γ . Note that there are γN

windows. We propose four different techniques of decrementing certain counts at window boundaries:

• LCU-ALL: At window boundaries, ∀ 1≤ i≤ d, 1≤ j≤w, if (sketch[i, j]> 0), then sketch[i, j] = sketch[i, j]−
1. The only difference is in CU sketch, we do not have items stored explicitly. Hence, we are decrementing

the whole sketch itself rather than explicitly decrementing the counts of all items by 1. Intuitively, over here

we are only storing the frequent items into the sketch.

• LCU-1: At window boundaries, ∀ 1 ≤ i ≤ d, 1 ≤ j ≤ w, if (sketch[i, j] > 0 and sketch[i, j] <= 1 ), then

sketch[i, j] = sketch[i, j]− 1. Intuitively, in this approach, we are trying to reduce some error over low-

frequent counts by turning the count of 1’s to zero at the window boundary.

• LCU-WS: At window boundaries, ∀ 1≤ i≤ d, 1≤ j≤w, if (sketch[i, j]> 0 and sketch[i, j]<=windowIdX),

then sketch[i, j] = sketch[i, j]−1. In this technique, we do not want to decrement the frequent counts. Hence,

we decrement only those counts by 1 which are less than or equal to current window index.

• LCU-SWS: Here we decrement the counts of sketch more conservatively. We only decrement counts if they

are less than or equal to ceil value of square root of current window index. At window boundaries, ∀ 1 ≤
i≤ d, 1≤ j≤ w, if (sketch[i, j]> 0 and sketch[i, j]<= d

√
windowIdXe), then sketch[i, j] = sketch[i, j]−1.
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The motivation behind using these techniques is that by reducing certain counts in the sketch, we can reduce

the over-estimation error in low-frequency items without incurring large under-estimation error on mid, and high

frequency counts. We conjecture that all the good properties of CU sketch holds. In addition for all approaches,

all reported frequencies f̂ will have both under and over estimation error: f − γN ≤ f̂ ≤ f + εN.

Experiments We perform experiments to compare the errors incurred in the approximate counts of different

sketches to their true counts. We use a subset of 2 million sentences (Subset) from Gigaword [6] corpus to

compute the frequency of words and their contexts. The context for a given word “x” is defined as the surrounding

words appearing in a window of 2 words to the left and 2 words to the right. The context words are concatenated

along with their positions -2, -1, +1, and +2. We store the counts of all words (excluding numbers, and stop

words), their contexts, and counts of word-context pairs in all the different sketches.

To evaluate the amount of error in approximate counts of sketches, we group all items with same true frequency

into a single bucket. This grouping done based on frequency is to distinguish which sketch makes mistakes on low,

mid, and high frequency items. Average Relative error is defined as the average of absolute difference between

the approximated, and the true value divided by the true value over all the items in each bucket.
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Figure 1: 10 million counter models with different decrement count strategies with fixed depth=3.

In Figure 1, first we fix the size of sketches to 10 million (10M) counters with four bytes of memory per each

counter (thus it only requires 40 MB of main memory). We use depth of 3, and width 10M
3

as it performs the best

for CU sketch [5], and our goal is to show that using LCU is better than the CU sketch. We can make several key

observations from Figure 1: • Using the simple LCU-1 over CU: reduces the error slightly over the low-frequency

items. • However, if we use LCU-SWS over CU and LCU-1, the error over low-frequency items is reduced by

a significant factor of at most 3. • If we move to LCU-WS over LCU-SWS, the error over low-frequency items

is again further reduced by a significant factor of at most 2. However, this reduction comes at the expense of

generating some small error on mid-frequency counts. • LCU-ALL has similar errors like LCU-WS but they are

bigger than LCU-WS. • To summarize, overall LCU-SWS, and LCU-WS perform better than CU, LCU-1, and

LCU-ALL. In addition, both have errors over different range of counts.

Applications LCU can useful in many NLP and Machine Learning (ML) problems where having large amounts

of data is beneficial. In NLP, for large scale language modeling [4] counting unique n-grams, and for large scale

Noun similarity [8] counting unique pairs of words, and their contexts. In ML, this idea can be used with Hash

kernels [9] for dimensionality reduction, and feature selection for reducing dimensionality of large feature-sets.
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