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Unsupervised discovery of latent representations, in addition to being useful for density modeling, visualisation
and exploratory data analysis, is also increasingly important for learning features relevant to discriminative tasks.
Autoencoders, in particular, have proven to be an effective way to learn latent codes that reflect meaningful
variations in data.

A continuing challenge, however, is guiding an autoencoder toward representations that are useful for a
particular discriminative task. While autoencoders are effective at capturing the statistics of data, if the salient
variations in the data distribution are not relevant to the desired discriminative task, then the features learned
by the autoencoder will not improve performance. A complementary challenge is to find codes that are explicitly
invariant to irrelevant transformations of the data.

To address these difficulties, we introduce the semiparametric latent variable model (SPLVM), which com-
bines an autoencoder with a Gaussian process latent variable model. The SPLVM enables an autoencoder’s
unsupervised representation to both incorporate relevant label information and ignore irrelevant variations.

Autoencoder Neural Networks

Our starting point for the SPLVM is the autoencoder, a special type of artificial neural network that is trained to
reproduce the input at its output. Denoting the latent space by X =R

J , the visible (input) space by Y=R
K , the

encoder as a function g(y ; φ) : Y → X and the decoder as a function f(x ; ψ) : X → Y , training an autoencoder
under least-squares reconstruction corresponds to the optimization:

φ?, ψ?=arg min
φ,ψ

Lauto({y
(n)}Nn=1, φ, ψ), Lauto({y

(n)}Nn=1, φ, ψ) =

N∑

n=1

K∑

k=1

(y
(n)
k − fk(g(y

(n);φ);ψ))2, (1)

where fk(·) refers to the kth output dimension of f(·) and {y(n)}Nn=1, y
(n) ∈ Y are the training examples.

Gaussian Process Latent Variable Models

As in the autoencoder, the GPLVM assumes that the N observed input data {y(n)}Nn=1 are the image of a
homologous set {x(n)}Nn=1, arising from a vector-valued “decoder” function f(x). Analogously to the squared-
loss, the GPLVM assumes observed data corrupted by zero mean Gaussian noise: y

(n) = f(x(n)) + ε with
ε ∼ N(0, σ2

IK). The innovation of the GPLVM is to place a Gaussian process prior on the function f(x) and
then optimize the latent representation {x(n)}Nn=1, while marginalizing out the unknown f(x). To preserve local
distances from the observed space within the latent embedding, [2] subsequently reformulated the GPLVM with
the constraint that the hidden representation be the result of a smooth mapping g(y ; φ) from the observed
space, acting much like an encoder. The marginal likelihood objective of this back-constrained GPLVM is:

φ?=arg min
φ
LGP({y(n)}Nn=1, φ), where LGP({y(n)}Nn=1, φ) =

K∑

k=1

ln |Σθk,φ| + y
(·)
k

T

(Σθk,φ+σ2
IN )−1

y
(·)
k , (2)

and [Σθk,φ]n,n′ = C(g(y(n);φ), g(y(n′);φ) ; θk).

The kth covariance matrix Σθk,φ depends on hyperparameters θk of kernel C(·, ·) and parameters φ of g(y ; φ).

GPLVM as an Infinite Autoencoder

Previous work [3] has established the relationship between Gaussian processes and artificial neural networks.
One overlooked consequence of this relationship is that it also connects autoencoders and the back-constrained
GPLVM. One can start from the autoencoder and notice that, for a linear decoder with squared-loss and zero-
mean Gaussian prior over its weights, the decoder can be integrated out. Learning then corresponds to the
minimization of Eqn. (2) with a linear kernel. Any non-degenerate positive definite kernel corresponds to a
decoder of infinite size, and also recovers the general back-constrained GPLVM algorithm.
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CIFAR-10 Dataset

Experiment α Accu.
1. Full 0.0 46.91

Images 0.1 56.75
2. 28x28 0.0 63.20

Windows 0.8 65.71
3. Convolu- 0.0 71.48

tional 0.01 72.28

Small NORB Dataset

Model Error
Autoencoder 10.97
Autoencoder + Logreg 10.44
SPLVM (class labels ) 8.60
SPLVM (all labels ) 7.89

Figure 1: Left: experiments on Oil Flow dataset. (A) compares the supervised guidance of SPLVM and
the parametric guidance of [1] when varying the amount of supervised guidance α and (B) compares SPLVM
with the discriminative GPLVM of [4] (state of the art on this dataset) when varying the training set size.
Middle: CIFAR-10 accuracies of SPLVM, for different experimental setups. Right: Comparisons on Small
NORB dataset, for which irrelevant labels (lighting,elevation,azimuth) are available.

Supervised Guiding of Latent Representations

When the salient variations in the input are only weakly informative about a particular discriminative task, it
can be useful to incorporate label information into unsupervised learning. To this end, [1] proposed to add a
parametric mapping c(x ; Λ) : X → Z (e.g. a logistic regressor) from the latent representation’s space X to the
label space Z and backpropagate error gradients from the output to the representation.

There are two disadvantages to this strategy. First, the assumption of a specific parametric form for the
mapping c(x ; Λ) restricts the guidance to classifiers within that family of mappings. The second and more
fundamental problem is that the learned representation is further committed to one particular setting of the
parameters Λ. Consider the learning dynamics of gradient descent optimization for this strategy. At every
iteration t of descent (with current state φt, ψt,Λt), the gradient from supervised guidance encourages the latent
representation (currently parametrized by φt, ψt) to become more predictive of the labels under the current
label map c(x ; Λt). Such behavior discourages moves in φ, ψ space that make the latent representation more
predictive under some other label map c(x ; Λ?) where Λ? is distant from Λt. Hence, while the problem would
seem to be alleviated by the fact that Λ is learned jointly, this constant pressure towards representations that
are immediately useful seems likely to increase the difficulty of representation learning.

Semiparametric Latent Variable Model

Rather than directly specifying a particular label mapping, we would prefer to find latent representations that
are consistent with many such maps. One way to arrive at such a guidance mechanism is to marginalize out
the parameters Λ of a label map c(x ; Λ) under a distribution that permits a wide family of such functions. We
have seen previously that this is specifically what GPLVM does for the decoder f(x ; ψ). We follow the same
reasoning and do this instead for c(x ; Λ). The result is a hybrid of the autoencoder and a back-constrained
GPLVM acting in Z space, where the encoder network g(y ; φ) is shared across models:

φ?, ψ?=arg min
φ,ψ

(1−α)Lauto({y
(n)}Nn=1, φ, ψ) + αLGP({z(n)}Nn=1, φ) (3)

where {z(n)}Nn=1 are the available labels (for discrete labels, we use a “one-hot” encoding.). We call this approach
to guided latent representation the semiparametric latent variable model, or SPLVM.

In experiments on the Oil, CIFAR and NORB datasets (see Figure 1), we evaluated how useful representations
learned by SPLVM are under a logistic regressor. We observe that SPLVM can indeed improve the discriminative
performance of autoencoder latent representations. SPLVM also improves over the guidance mechanism proposed
by [1], confirming the usefulness of semiparametric guidance. Finally, on NORB, SPLVM is shown to even take
avantage of irrelevant labels, i.e. labels informative of variations under which the class label should be invariant.
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