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1 Introduction

Many machine learning algorithms implement empirical risk minimization or a regularized variant of it. For example,
the popular AdaBoost [1] algorithm minimizes exponential loss on the training examples. Recently, another alternative
called sample variance penalization [2] has been proposed. Sample variance penalization is motivated from empirical
Bernstein bounds that involve both the empirical mean and the empirical variance of a sample. A new boosting algorithm
is proposed in this paper which also leverages the empirical Bernstein inequality. The algorithm minimizes a weighted
combination of the empirical mean and the empirical variance of the risk. The algorithm proposed in this work does not
require exhaustive enumeration of the weak learners (unlike an earlier algorithm by [3]).

It is assumed that a training set (Xi, yi)
n
i=1 where Xi ∈ Rm and yi ∈ {±1} is drawn independently and identically

distributed (iid) from a fixed but unknown distribution D. The goal is to learn a classifier or a function f : X → {±1}
that performs well on test examples drawn from the same distribution D. In the rest of this paper, G : X → {±1}
denotes the so-called weak learner. The notation Gs denotes the weak learner in a particular iteration s. Further, the
two indices sets Is and Js respectively denote examples that the weak learner Gs correctly classified or misclassified, i.e.,
Is := {i|Gs(Xi) = yi} and Js := {j|Gs(Xj) 6= yj}.

2 Algorithm

Require: (Xi, yi)
n
i=1, scalar parameter

λ ≥ 0, weak learners H
Initialize the weights: wi ←

1
n
;

Initialize f to predict 0 on all inputs.
for s← 1 to S do

ui ← λnw2
i + (1 − λ)wi

Estimate a weak learner Gs(·)
from training examples weighted by
(ui)

n
i=1.

αs = 1
4 log

(P

j∈Js
uj

P

i∈Is
ui

)

if αs < 0 then break end if
f(·)← f(·) + αsG

s(·)
wi ← wi exp(−yiG

s(Xi)αs)/Zs

where Zs is such that
∑n

i=1 wi = 1.
end for

Figure 1: VEB-Boost

The proposed algorithm appears in Figure 1. This algorithm has a user
specified parameter λ which lies in the range [0, 1]. With the exponential
loss, it was shown by [3] that sample variance penalization is equivalent to
minimizing the following cost,
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The following lemma and the theorems together show that VEB-Boost
minimizes the above cost iteratively.

Lemma 1 The update of αs in VEB-Boost minimizes the cost
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where wi = e−yi

Ps−1

t=1
αtG

t(Xi)

Theorem 2 Assume that 0 ≤ λ ≤ 1 and
∑n

i=1 wi = 1 (i.e. normalized
weights). Then, the cost in the above lemma (i.e. (1)) is a variational upper
bound on the cost
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with equality being achieved at α = 0.
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Decision Stumps CART
Dataset AdaBoost VEB-Boost EBBoost AdaBoost VEB-Boost
image 4.28 ± 0.8 3.75 ± 0.7 4.04 ± 0.8 2.61 ± 0.6 2.36 ± 0.5
musklarge 7.80 ± 1.0 6.82 ± 0.6 6.89 ± 0.6 6.67 ± 0.7 6.47 ± 0.5
nist38 5.68 ± 0.6 5.23 ± 0.5 5.34 ± 0.4 3.30 ± 0.3 3.19 ± 0.3
nist56 3.64 ± 0.5 3.42 ± 0.4 3.38 ± 0.4 2.26 ± 0.3 2.17 ± 0.2
ringnorm 15.05 ± 3.1 12.65 ± 2.8 13.45 ± 2.4 7.65 ± 2.4 7.35 ± 2.4
splice 10.57 ± 1.1 10.71 ± 0.9 10.27 ± 0.9 5.10 ± 0.8 4.43 ± 0.6
twonorm 4.30 ± 0.4 4.08 ± 0.4 4.00 ± 0.2 4.08 ± 0.5 3.86 ± 0.4

Table 1: Results with decision stumps and decision trees.

At each step of boosting, the variational upper bound touches the cost function at its value from the previous iteration.
This upper bound is minimized in each iteration by VEB-Boost. Thus, it is guaranteed to monotonically decrease the cost
in each step. The variational bound is at its loosest at λ = 0. Despite this, the following theorem shows that VEB-Boost
is still efficient compared to AdaBoost at λ = 0.

Theorem 3 Let OA denote the squared cost obtained by AdaBoost after S iterations. For weak learners with a fixed error
rate ε < 0.5, VEB-Boost with the setting λ = 0 attains a cost at least as low as OA in no more than 2S iterations.

The EBBoost algorithm proposed by [3] suffers from a severe limitation: it requires enumeration and evaluation of
every possible weak learner per iteration. Typically, weak learners take weights on the training examples and output a
rule such that performance on that weighted set of examples is guaranteed to be better than random guessing. However,

with the EBBoost algorithm, the weight on all the misclassified examples is
∑

i∈Js
w2

i +
(
∑

i∈Js
wi

)2
and the weight on

correctly classified examples is
∑

i∈Is
w2

i +
(
∑

i∈Is
wi

)2
; these aggregate weights on misclassified examples and correctly

classified examples do not translate into weights on the individual examples. Thus, it becomes necessary to exhaustively
enumerate weak learners with EBBoost.

3 Experiments

The experiment setup was similar to that in [3]. Experiments were conducted with decision stumps and decision trees
(CART) as the weak learners. Note that EBBoost could not be run with decision trees as weak learners since it requires
an exhaustive enumeration of all possible configurations which is unrealistic. A subset of the results are presented in Table
1. For each dataset, and for each weak learner, the algorithm with the best percentage test error is represented by a
dark shaded cell. All lightly shaded entries for that dataset and that weak learner are not significantly different from the
minimum error. With decision stumps, both EBBoost and VEB-Boost have comparable performance and significantly
outperform AdaBoost. With CART as the weak learner, VEB-Boost is significantly better than AdaBoost.

4 Conclusions

We proposed a new algorithm called VEB-Boost to overcome the limitations of EBBoost. VEB-Boost minimizes a well
motivated cost by iterating a variational upper bound. Even when the bound is at its loosest, the number of iterations
required by VEB-Boost is a small constant factor more than the number of iterations required by AdaBoost. Experimental
results showed that VEB-Boost outperforms AdaBoost in terms of classification accuracy and efficiently extends to any
family of weak learners.
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