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Low-dimensional embedding, manifold learning (Roweis and Saul, 2000), clustering, and anomaly
detection (Chandola et al., 2009) are important problems in unsupervised learning and machine
learning. The existing methods usually consider the case when each instance has a fixed, finite-
dimensional feature representation, and the goal is to embed these feature vectors into a lower
dimensional space, perform clustering, or detect outlier feature vectors. Here we consider a different
setting. We assume that each instance corresponds to a continuous probability distribution. These
distributions are unknown, but we are given some i.i.d. samples from each distribution. Our goal
is to estimate the distances between these distributions and using these distances to perform low-
dimensional embedding, clustering, or anomaly detection for these distributions.

The formal definition of the problem is as follows. We are given {Xi,1, . . . , Xi,Ti
} i.i.d. sam-

ples from {fi} density functions (i = 1, . . . , I, Xi,t ∈ R
D). Using these samples, we want to

estimate the distances between these {fi} density functions. Here, we use the L2-divergence:

wi,j
.
=

(∫
(fi(x)− fj(x))

2dx
)1/2

. The problem, of course, is that we do not know these {fi} densities,
and we want to compute the L2-divergences without estimating them. For this purpose, we propose
a consistent L2-divergence estimator. The estimator is simple, can avoid the need for density esti-
mation, and uses only certain k nearest neighbor statistics with a fixed k.

Let c denote the volume of a D-dimensional unit ball. For a fixed (i, j), let ρ(t) be the Euclidean
distance of the kth nearest neighbor of Xi,t in the sample Xi,1:Ti\t, and similarly let ν(t) denote the
distance of the kth nearest neighbor of Xi,t in the sample Xj,1:Tj

. Under certain conditions, we can
prove that the following expression is an L2-consistent estimator for wi,j .

ŵi,j
.
=

1

Ti

Ti∑

t=1

[
k − 1

(Ti − 1)cρD(t)
+

(Ti − 1)cρD(t)

(TjcνD(t))2
(k − 2)(k − 1)

k
−

2(k − 1)

TjcνD(t)

]
.

Having estimated the {wi,j} distances, we can analyze the distributions as if they were points in
a finite-dimensional Euclidean space. For example, we can cluster the distributions, or embed them
into a low-dimensional space while preserving proximity; distributions close to each other should be
mapped into points that are also close to each other in the lower dimensional space. This can be
done using multidimensional scaling (Borg and Groenen, 2005), Isomap (Tenenbaum et al., 2000),
or other methods that require only the pairwise distances. This embedding provides a useful tool
for visualization and unsupervised exploration of the data set.

Another interesting application of the proposed divergence estimator is the group anomaly de-
tection problem. Anomaly detection is a widely studied research area. Most results, however, focus
only on finding individual outlier points. Nonetheless, interesting larger scale phenomena can only
be discovered when aggregated data is considered. For example, finding unusual galaxies in a sky
survey is a standard anomaly detection problem, while finding unusual spatial clusters of galaxies is
a group anomaly detection problem. Unlike traditional detection methods that focus on individual
points, we are interested in finding groups of points that exhibit unusual behavior. We model each
group as a bag of features, and assume that the ith group has a feature distribution fi. Our goal is



to select those groups whose feature distributions are significantly different from the distributions of
the other groups. This problem can be addressed using the proposed divergence estimator by first
estimating the distances between the groups’ feature distributions and then finding those groups
that are far away from their neighbors.
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