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Last year at Snowbird, we introduced a self-terminating generalization of a decision tree in which

each node s has associated with it both a predicate πs used for branching, as in a standard decision

tree, and a real value αs. For a prediction tree T we define the norm variation complexity V p(T ) as

V p(T ) :=
∑

s∈T λ(s)
∥∥αC(s)

∥∥
p
where C(s) is the set of children of s and λ(s) is a penalty for node s (e.g.

its depth). By convention α = 0 for null children. We consider both p = 1 and p = ∞ to encourage small

decision trees. When using the `1 regularizer, we get edge-based termination, in which only some of the

edges are expanded. The motivation for the `∞ regularizer is that we wish to induce a sparse solution

in which children C(s) of a node s are zero. However, if the optimal solution is such that at least some

αs′ for s′ ∈ C(s) are non-zero, then the rest of the children can be non-zero as well without incurring

further penalty. Let fT be the function represented by the prediction tree T , where for example x, fT (x)

is simply the sum of the α values on the path from the root of T to the leaf reached by x. Let R̂n(L, f, w)

denote the empirical risk of the function f with loss L weighted by w � 0, that is, given examples xi and

labels yi, R̂n(L, f, w) :=
∑n

i=1 wiL(f(xi), yi). Our goal is to minimize the penalized empirical risk

R̂n(L, f, w) + V p(T ) =

n∑

i=1

wiL(f(xi), yi)) + V p(T ). (1)

The end result is a learning algorithm for decision and prediction trees in which growing and termination

happen concurrently and are tightly coupled. Also our approach is “backward compatibility” with existing

tree learning procedures. Upon omitting the variation penalty, we obtain well known growing criteria

such as the information gain and the Gini index (Breiman et al. (1984); Quinlan (1986)).

This year we will present an extension of this work for multiclass problems. For any node s in the

prediction tree, let Ps(x) be the nodes along the path from the root to s when evaluating example x. In

the classification setting, each node s is associated with a bias value b =
∑

v∈Ps
αv. When using the log

loss as our empirical loss, we can view b as a prior distribution over the target label where the probability

of the label being 1 is u = 1/(1 + e−b) for all examples that reach the node s. In the multiclass setting

we instead need to represent the label distribution as a probability vector, u, rather than a single scalar.

So we replace the single scalar α associated with each node by a vector α. The distribution induced over

the labels takes the form pi ∼ ebi+αi . Our goal is to further endow the self-terminating property and

promote solutions where the entire vector α is zero in the lack of strong empirical evidence. To do so,

we use the `∞ regularization which promotes group sparsity (Negahban and Wainwright (2008)).

We overview our optimization algorithm focusing on a single branch from s with prior u for which q

is the empirical distribution over the labels following that branch. Let wij = wi when example i follows

branch j and wij = 0 otherwise. Let qk = 1
κ

∑
u:yi,j=k wi,j , where κ is a normalization constant which

ensures that q is a proper distribution. Our goal is to determine the (posterior) distribution p of the
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labels for child node residing at the branch. This posterior distribution becomes in turn the prior u

as we proceed to perform the growing procedure at the child node. Formally, the multiclass penalized

risk minimization for the logistic loss amounts to minimizing −
∑

i qi log pi + λ ‖α‖
∞

where pi ∼ eαi+bi .

Finding the optimal solution of this problem is not an easy task due to the `∞ penalty. We solve instead its

Legendre dual, which is min
γ

∑

i

((qi − γi) log(qi − γi) + γi log ui) such ‖γ‖1 ≤ λ and
∑

i γi = 0. To solve

the dual form we introduce a Lagrange multiplier θ ≥ 0 for the `1 constraint and δ for the constraint that∑
i γi = 0, to get minγ

∑
i((qi−γi) log(qi−γi)+γi log ui+ θ(‖γ‖1−λ)+δ

∑
i γi. Denoting si = sign(γi),

and using the sub-gradient optimality condition with respect to γ yields that,

pi = qi − γi =





uie
θ/z γi > 0

uie
−θ/z γi < 0

qi γi = 0

, (2)

where z is the standard normalization (partition function) which ensures that p is a proper distribution.

Eq. (2) underscores the relation between γ and p. Specifically, Eq. (2) implies that when γi > 0,

ui ≤ pi < qi, and for γi < 0, ui ≥ pi > qi. In words, the solution p lies between q and u where the

lower and upper bounds on each coordinate in p depends on the relation between the corresponding

components in q and u.

Let I+ be the set of indices for which γi > 0, I− be the set of indices for which γi < 0, and I0 be the

set of indices for which γi = 0. Define Q+ =
∑

i∈I+ qi, Q− =
∑

i∈I− qi, and similarly, U+ =
∑

i∈I+ ui,

U− =
∑

i∈I− ui. Combining Eq. (2) with the constraint that
∑

i γi = 0 (which stems from the requirement∑
i pi = 1) yields (eθU+ + e−θU−)/z = Q+ + Q−. Similarly, combining Eq. (2) with the constraint∑
i |γi| = λ yields (−eθU+ + e−θU−)/z = λ−Q+ +Q−. Combining the last two equalities gives a closed

form solution for θ and z,

θ =
1

2
log

(
(Q+ − λ/2)U−)

(Q− + λ/2)U+

)
, z =

eθU+ + e−θU−

Q+ +Q−

. (3)

We can further characterize the structure of the correct partition of the components of γ into the sets

I+, I−, I0. From Eq. (2) it immediately follows that when γi > 0, log(pi/ui)+ log z = θ and when γi < 0,

log(pi/ui) + log z = −θ. Furthermore, by applying the KKT conditions for optimality, the following

property holds,

| log(qi/ui) + log z| < θ ⇒ γi = 0 . (4)

We can combine these properties to obtain an efficient algorithm for finding this optimal partition.

First we sort the components according to the ratios qi/ui. Without loss of generality, assume that

q1/u1 ≤ q2/u2 ≤ · · · ≤ qn/un, where n is the number of different labels. From Eq. (4) we know that there

must exist two indices r and s such that 1 ≤ r < s ≤ n and qr/ur < 1 and qs/us > 1. In turn, these

ratio properties imply that that for j ≤ r, γj < 0, γr+1 = . . . = γs−1 = 0, and for j ≥ s, γj > 0. Further,

for a given proposed partition, we can efficiently compute the solution corresponding to that partition by

combining Eq. (2) and Eq. (3). Finally, from Eq. (4), it is clear that a candidate partition is optimal iff

θ > 0 and for all i such that | log(qi/ui) + log z| < θ, the value of γi is zero.
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