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1 The RNN-RBM

Many naturally occurring phenomena such as mu-
sic, speech, or human motion are inherently sequen-
tial. Complex sequences are often non-local (long-
term temporal dependencies) and high-dimensional
(multi-modal conditional distribution). For the ex-
ample of polyphonic music, these properties repre-
sent the basic components of Western music, namely
rhythm and harmony. Here we wish to exploit the
recurrent neural network (RNN) internal memory
that can in principle represent long-term dependen-
cies, and energy-based models, such as the Restricted
Boltzmann Machine (RBM), that allow us to express
complex distributions by the means of an energy func-
tion.

This combination was first put forward with the
so-called Temporal RBM (TRBM) [3], the first such
probabilistic model which however uses a heuris-
tic training procedure. The Recurrent TRBM
(RTRBM) [4] is a slight modification of the TRBM
that allows for exact inference and efficient training
by contrastive divergence (CD). The RTRBM can be
understood as a sequence of RBMs whose parameters
b
(t)
v , b

(t)
h ,W (t) are obtained from the output at time t

of a RNN (Figure 1). We consider as in [4] the case
where only b

(t)
h is variable with b

(t)
h = bh + W ′ĥ(t−1)

where ĥ(t) is the mean-field value of h(t).
Here we extend the RTRBM to include a full RNN

with its own hidden units as well as those of condi-
tional RBMs at each time-step (Figure 1). This im-
proves the expressive power of the model while pre-
serving the efficiency of the training procedure. The
hidden units ĥ(t) are now connected to their direct
predecessor ĥ(t−1) and to v(t) by the relation:

ĥ(t) = σ(W2v
(t) +W3ĥ

(t−1) + bĥ). (1)

Note that the single-layer RNN-RBM is more than a
high-capacity RTRBM since its hidden units, released
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Figure 1: Structure of the RNN-RBM, including the
RTRBM as a special case when W2 = W , W3 = W ′,
bĥ = bh.

from their duty to represent the free-energy, can use
arbitrary temporal features (W2).

We carry out experiments on the same baseline
datasets used in [4]. We compare the performance of
the single-layer RNN-RBM with the RTRBM at op-
timal capacity as determined on a separate validation
set. We trained all models using 50,000 weight up-
dates of CD25 with momentum 0.9. Since reporting
the exact log-probability of the test set under both
models is impossible, we use the mean square predic-
tion error as a basis of comparison.

The first dataset1 is a simulation of 2 balls bounc-
ing in a box. The videos produced are of length 128
and of resolution 15× 15. The squared prediction er-
ror per pixel and time-step saturates at 0.010 for the
RTRBM and at 0.005 for the RNN-RBM. The human
motion capture dataset2 consists of 49 real values per
time-step so we use Gaussian RBMs. Actual train-
ing and evaluation are performed on sub-sequences of
length T = 50. The optimal-capacity mean squared
prediction test error is 0.41 for the RTRBM and is
0.33 for the single-layer RNN-RBM.

1www.cs.utoronto.ca/∼ilya/code/2008/RTRBM.tar
2http://people.csail.mit.edu/ehsu/work/sig05stf
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Table 1: Prediction error, confidence coefficient α and multi-f0 estimation results (%) for the various models.

Model Prediction α Total Missed Subst. False Recall Precision Accuracy
error error error error alarms

(Yeh, 2010) - - 34.3 23.3 9.11 1.89 67.6 86.0 66.3
Unigram 0.103 0.02 33.7 24.0 7.85 1.84 68.1 87.5 66.9
RBM 0.060 0.02 31.0 24.3 5.01 1.75 70.7 91.3 69.5
RTRBM 0.040 0.03 30.3 23.4 5.06 1.87 71.6 91.2 70.3
RNN-RBM 0.039 0.03 30.2 23.2 5.17 1.84 71.6 91.1 70.3

2 Musical language models

We apply our algorithm to the real-world task of
modeling sequences of polyphonic music using the
Mozer dataset [2]. We consider models of symbolic
sequences typically contained in a MIDI file. Musical
models are trained to predict the pattern of notes in
the next time interval given the previous ones. While
most existing models output only monophonic notes
along with predefined chords, our approach uses the
RNN-RBM to learn both temporal dependencies and
chord conditional distributions. We use an input of 49
binary visible units than span 4 octaves from F#2 to
F#6 and temporally aligned on an integer fraction of
the beat (quarter note). We compare our results with
a simple unigram model (independent notes), a har-
monic model (independent RBMs) and the RTRBM.

The Mozer dataset consists of 22 excerpts from
classical pieces played with a single polyphonic in-
strument. The maximum polyphony (number of si-
multaneous notes) for this dataset is 5 and the av-
erage polyphony is 4.4. The mean squared predic-
tion errors of our models for the Mozer dataset are
presented in the left-most column of Table 1. Tonal-
ity inference is achieved by finding the transposition
that maximizes the likelihood under a model trained
on pieces of constant tonality. This task is solved
perfectly for all the 22 sequences by using cross-
validation unigrams obtained by first reporting notes
on a single octave.

The multiple fundamental frequency (f0) estima-
tion task consists of finding the audible note pitches
in the signal at 10 ms intervals. See [1] for com-
mon evaluation metrics. Most existing algorithms are
frame-based and rely exclusively on the audio signal,
but musical language models can improve purely au-
ditive approaches. We implemented the multi-f0 al-
gorithm that won the MIREX 2010 contest [5] which
works by (i) generating a set of f0 candidates and (ii)
jointly evaluating all combinations of f0 by a score

function. We integrate our symbolic model predic-
tion into step (ii) in the form of an extra term to the
score function: α logP (v(t)|past). This corresponds
to a product of experts where α is the confidence co-
efficient of our symbolic predictor. We feed our sym-
bolic models with the average of the estimated f0 at
the previous time-step (“past”). If our algorithm is
run on audio signals without preprocessing, tempo
tracking must be performed first.

We report the multi-f0 estimation results on the
synthesized Mozer dataset using our hybrid method
in Table 1. Test results are calculated using leave-
one-out cross-validation while the hyper-parameter α
has been optimized on 10% of each sequence. Our
best symbolic model (RNN-RBM) yields an improve-
ment in overall accuracy of 4% over the original state-
of-the-art algorithm (first row).
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