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The idea of ‘inference through contradictions’ was introduced by Vapnik[1]  in order to incorporate a priori 
knowledge into the learning process. This knowledge is introduced via additional unlabeled data samples (called 
virtual examples or the Universum) that are used along with labeled training samples, to perform an inductive 
inference. For example, if the goal of learning is to discriminate between handwritten digits 5 and 8, one can 
introduce additional ‘knowledge’ in the form of other handwritten digits 0, 1, 2, 3, 4, 6, 7, 9. Obviously, such 
Universum samples contain certain information about handwritten digits, but they do not have the same distribution 
as labeled training samples. The idea that ‘a good universum needs to be positioned in-between the two classes’ is 
implicit in Vapnik’s original formulation [2] and in the loss function which penalizes Universum samples that are 
close to either class. However, after introduction of U-SVM [2, 3] several researchers tried to quantify this notion 
explicitly, in terms of analytic properties of the Universum and labeled data. Sinz et al [4] showed that the optimal 
decision boundary of the U-SVM tends to make the normal vector orthogonal to the principal direction of the 
Universum data set. This condition holds for both the original Vapnik’s Universum SVM (U-SVM) formulation and 
for the least-squares U-SVM, where the squared loss function is used for labeled and Universum samples. 

Our work pursues the same general objective as [4], i.e. the characterization of a good Universum for Vapnik’s 
original formulation. However, we take a more practical and specific approach. That is, we ask the following 
questions:  

i. Can a given Universum data set improve generalization performance of a standard SVM classifier trained 
using only labeled data? 

ii. Can we provide practical conditions for (i), based on the properties of the Universum data and labeled data?  
This approach is more suitable for non-expert users, because: 

- practitioners are interested in using U-SVM only if it provides an improvement over standard SVM; 
- the problem of (full-blown) model selection for the U-SVM is alleviated, because its two parameters (kernel 

and regularization parameter C) are tuned separately, during training standard SVM classifier. 
Proposed strategy for analyzing practical conditions for the effectiveness of the U-SVM is outlined below: 
a. estimate standard SVM classifier for a given (labeled) training data set. Note that this step includes optimal 

model selection, i.e. optimal tuning of the regularization parameter C and kernel; 
b. generate low-dimensional representation of training data [5] by projecting it onto the normal direction vector of 

the SVM decision boundary estimated in (a); 
c. project the Universum data onto the normal direction vector (of SVM decision boundary), and analyze projected 

Universum data in relation to projected training data. 
Then statistical properties of the projected Universum data, relative to labeled training data, may suggest whether 

using this Universum will provide improvement vs. standard SVM estimated in step (a). In particular, a Universum 
data set will be effective if its histogram of projections satisfies two conditions: 
(C1) It is symmetric relative to the (standard) SVM decision boundary, and  

(C2) It has wide distribution between margin borders denoted as points -1/+1 in the projection space. 
We emphasize that the effectiveness of Universa can be evaluated only in the context of particular labeled training 

data. For example, consider classification of handwritten digits ‘5’ and ‘8’ using the MNIST data. The goal is to 
investigate the effectiveness of two types of Universa: handwritten digits 1 and 3, and to explain their effectiveness 
by analyzing histograms of projections of both labeled and Universum data sets. This set of experiments used 
training/validation set size of 1,000 (500 per class), Universum set size 1,000, and test set size 1,866. Model 
selection for standard RBF SVM classifier and for U-SVM is performed using the validation data set. Each 
experiment is repeated 10 times with different random realizations of training/validation/Universum samples, and 
the average test error (and its standard deviation in parenthesis) is reported. The test error rates of SVM and U-SVM 
are shown in Table 1, and the typical histograms of projections for training data and Universum data are shown in 
Fig. 1. 

TABLE 1. TEST ERROR RATES FOR MNIST DATA WITH DIFFERENT UNIVERSA. TRAINING SET SIZE IS 1,000 SAMPLES. 
 SVM U-SVM (digit 1) U-SVM (digit 3) 
Test error 1.47% (0.32%) 1.31% (0.31%) 1.01% (0.28%) 
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                 (a) digit 1               (b) digit 3 

Fig. 1. Univariate histogram of projections for 2 different types of Universa. Legend: histogram of projections of digit ‘5’ samples is shown in 
red, digit ‘8’ samples -  in blue, Universum samples – in black. SVM margin borders are marked as -1/+1. 

The histograms of projections shown in Fig. 1 suggest that digit 1 Universum is less effective than digit 3 because 
its projections are more biased towards the distribution of digit 8. The Universum samples for digit 3 is more widely 
and symmetrically distributed inside the margin borders, so it is expected to provide better performance (than digit 1 
Universum). These findings are consistent with the empirical results in Table 1, showing no statistically meaningful 
improvement for digit 1 Universum, and a significant improvement for digit 3.  

Next, we provide theoretical justification of our practical conditions for the effectiveness of Universum learning. 
Following [2,3], the linear U-SVM formulation can be given as (setting 0ε = for simplicity).  
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This optimization formulation (1) can be approximated as, 
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which the mean and the variance of the projected values for the universum samples are small. Our conditions specify 
that for a case when the projection of the Universum data is symmetric relative to the (standard) SVM decision 
boundary (i.e 0u ≈ ). In addition, U-SVM can provide a possible improvement over SVM by minimizing the wide 
distribution of the universum samples between SVM margin borders , i.e. by minimizing large 2

Uσ in (2).  
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