
Clustering Protein Sequences With Limited Distance

Information

Konstantin Voevodski
Department of Computer Science

Boston University
kvodski@bu.edu

Maria-Florina Balcan
College of Computing

Georgia Institute of Technology
ninamf@cc.gatech.edu

Heiko Röglin
Department of Computer Science

University of Bonn
heiko@roeglin.org

Shang-Hua Teng
Computer Science Department

University of Southern California
shanghua@usc.edu

Yu Xia
Bioinformatics Program and Department of Chemistry

Boston University
yuxia@bu.edu

Clustering is very useful for exploring relationships between protein sequences. However, most
clustering algorithms require distances between all pairs of points as input, which is infeasible to
obtain for very large protein sequence data sets. Even with a one versus all distance query such as
BLAST (Basic Local Alignment Search Tool) [AGM+90], which efficiently compares a sequence
to an entire database of sequences, it may not be possible to use it n times to construct the entire
pairwise distance matrix, where n is the size of the data set. We present a clustering algorithm that
gives an accurate clustering using only O(k log k) queries, where k is the number of clusters.

We analyze the correctness of our algorithm under a natural assumption about the data, namely
the (c, ε) approximation stability property of [BBG09]. Balcan et al. assume that there is some
relevant “target” clustering CT , and optimizing a particular objective function for clustering (such
as min-sum) gives clusterings that are structurally close to CT . More precisely, they assume that any
c-approximation of the objective is ε-close to CT , where the distance between two clusterings is the
fraction of misclassified points under the optimum matching between the two sets of clusters. Our
contribution is designing an efficient algorithm that given this approximation stability assumption
for the min-sum objective produces an accurate clustering using few one versus all distance queries.

The min-sum objective function is to minimize Φ(C) =
∑k

i=1

∑
x,y∈Ci

d(x, y), where C is a k-

clustering that partitions the points into k sets C1, . . . , Ck.

The algorithm presented here is related to the one presented in [VBR+10]. The Landmark-
Clustering algorithm presented there gives an accurate clustering if the instance satisfies the (c, ε)-
property for the k-median objective. However, if the property is satisfied for the min-sum objective
the structure of the clustering instance is quite different, and the algorithm given in [VBR+10] fails
to find an accurate clustering in such cases. The min-sum objective is also considerably harder
to approximate. For k-median the best approximation guarantee is (3 + ε) given by [AGK+04].

For the min-sum objective when the number of clusters is arbitrary there is an O(δ−1 log1+δ n)-
approximation algorithm with running time nO(1/δ) due to [BCR01].

Topic: computational biology
Preference: oral
Presenter: Konstantin Voevodski

1

���

���

���

���

	�

� �

Figure 1: Cluster cores C1, C2 and C3 are shown with diameters d1, d2 and d3, respectively. The
diameters of the cluster cores are inversely proportional to their sizes.

1 Algorithm

Our Landmark-Clustering-Min-Sum algorithm starts by uniformly at random choosing some points
that we call landmarks. For each landmark we use a one versus all query to get the distances between
this landmark and all other points. These are the only distances used by our procedure.

Our algorithm then expands a ball Bl around each landmark l ∈ L one point at a time. We sort all
landmark-point pairs (l, s) by the distance between l and s, and then consider the pairs (l, s) in order
of increasing distance. In each iteration we add s to Bl, and check whether some ball Bl∗ satisfies
|Bl∗ | · r > T , where r is the next largest landmark-point distance, and T is an input parameter.
If this is the case, we consider all balls that overlap Bl∗ on any points, and compute a cluster that
contains all the points in these balls. Points and landmarks in the cluster are then removed from
further consideration. Our procedure terminates once we find k clusters. The algorithm takes k, the
number of landmarks, and T as an argument. In our proof T is set based on c, ε, and the optimum
objective value OPT. In practice we do not know these values, but we can try increasing estimates
of T until the first k clusters contain enough of the points. This procedure gives a provably correct
clustering if we do not know OPT but we know c and ε.

The most time-consuming part of our algorithm is sorting all landmark-points pairs, which takes
O(|L|n log n), where n is the size of the data set and L is the set of landmarks. With a simple
implementation that uses a hashed set to store the points in each ball, the total cost of computing
the clusters and removing clustered points from other balls is at most O(|L|n) each. All other
operations take asymptotically less time, so the overall runtime of our procedure is O(|L|n log n).
If the target clusters are balanced in size, it suffices to use O(k log k) landmarks to produce an
accurate clustering.

We can prove that if the clustering instance satisfies the (c, ε)-property for the min-sum objective
function, then with high probability Landmark-Clustering-Min-Sum finds a clustering that is ε-close
to the target clustering CT . Our proof requires that the distance function is a metric, we know the
values of c, ε, and the optimal objective value OPT, and that the sizes of the target clusters are not
too small. We next give some intuition for our argument.

Given our approximation stability assumption, the target clustering must have the structure shown
in Figure 1. Each target cluster Ci has a “core” of well-separated points, where any two points in
the cluster core are closer than a certain distance di to each other, and any point in a different core
is farther than cdi, for some constant c. Moreover, the diameters of the cluster cores are inversely
proportional to the cluster sizes: there is some constant θ such that |Ci| · di = θ for each cluster Ci.
Given this structure, it is possible to classify the points in the cluster cores correctly if we extract the
smaller diameter clusters first. For example, we can extract C1, followed by C2 and C3 if we choose
the threshold T correctly and we have selected a landmark from each cluster core. However, if we
wait until some ball contains all of C3, C1 and C2 may be merged.

2 Experiments

We present some preliminary results of testing our Landmark-Clustering-Min-Sum algorithm on
protein sequence data. Instead of requiring all pairwise distances between the sequences as input,
our algorithm is able to find accurate clusterings by using only a few BLAST calls. For each data

2

Figure 2: Comparing the performance of k-means in the embedded space (blue), Landmark-
Clustering (red), and Landmark-Clustering-Min-Sum (green) on 10 data sets from Pfam. Datasets 1-
10 are created by uniformly at random choosing 8 families from Pfam of size s, 1000 ≤ s ≤ 10000.

set we first build a BLAST database containing all the sequences, and then compare only some of
the sequences to the entire database. To compute the distance between two sequences, we invert the
bit score corresponding to their alignment, and set the distance to infinity if no significant alignment
is found. In practice we find that this distance is almost always a metric, which is consistent with
our theoretical assumptions.

In our computational experiments we use data sets created from the Pfam [FMT+10] (version 24.0,
October 2009) database, which classifies proteins by their evolutionary relatedness. These are the
same data sets that were used in the [VBR+10] study, therefore we also show the results of the origi-
nal Landmark-Clustering algorithm on these data, and use the same amount of distance information
for both algorithms (30k landmarks/queries for each data set, where k is the number of clusters). In
order to compare a computationally derived clustering to the one given by the gold-standard classi-
fication, we use the distance measure from the theoretical part of our work, which is computed by
solving a minimum weighted bipartite matching problem between the two sets of clusters.

Because our Pfam data sets are very large, we cannot compute the full distance matrix, so we can
only compare with methods that use a limited amount of distance information. A natural choice is the
following algorithm: uniformly at random choose a set of landmarks L, |L| = d; embed each point
in a d-dimensional space using distances to L; use k-means clustering in this space (with distances
given by the Euclidean norm). This procedure uses exactly d one versus all distance queries, so we
can set d equal to the number of queries used by the other algorithms.

Figure 2 shows the results of our experiments. We can see that Landmark-Clustering-Min-Sum
outperforms k-means in the embedded space on each data set. However, it does not perform better
than the original Landmark-Clustering algorithm on most of these data sets. When we investigate
the structure of the ground truth clusters in these data sets, we see that the diameters of the clusters
are roughly the same. When this is the case the original algorithm will find accurate clusterings as
well [VBR+10]. Still, Landmark-Clustering-Min-Sum tends to give better results when the original
algorithm does not work well (data sets 7 and 9).

We plan to conduct further studies to find data where clusters have different scale and there is an
inverse relationship between cluster sizes and their diameters. This may be the case for data that have
many outliers, and the correct clustering groups sets of outliers together rather than assigns them to
arbitrary clusters. The algorithm presented here will consider these sets to be large diameter, small
cardinality clusters. More generally, the algorithm presented here is more robust because it will give
an answer no matter what the structure of the data is like, whereas the original Landmark-Clustering
algorithm often fails to find a clustering if there are no well-defined clusters in the data.

3

References

[AGK+04] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit. Local
search heuristics for k-median and facility location problems. SIAM J. Comput., 33(3),
2004.

[AGM+90] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local alignment
search tool. J. Mol. Biol., 215(3):403–410, 1990.

[BBG09] M. F. Balcan, A. Blum, and A. Gupta. Approximate clustering without the approxima-
tion. In Proc. of 20th ACM-SIAM Symp. on Discrete Algorithms (SODA), 2009.

[BCR01] Y. Bartal, M. Charikar, and D. Raz. Approximating min-sum k-clustering in metric
spaces. In STOC ’01: Proceedings of the thirty-third annual ACM symposium on The-
ory of computing, 2001.

[FMT+10] R.D. Finn, J. Mistry, J. Tate, P. Coggill, A. Heger, J.E. Pollington, O.L. Gavin, P. Gune-
sekaran, G. Ceric, K. Forslund, L. Holm, E.L. Sonnhammer, S.R. Eddy, and A. Bate-
man. The pfam protein families database. Nucleic Acids Res., 38:D211–222, 2010.

[VBR+10] K. Voevodski, M. F. Balcan, H. Röglin, S. Teng, and Y. Xia. Efficient clustering with
limited distance information. In Proc. of the 26th Conference on Uncertainty in Artifcial
Intelligence, 2010.

4

