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Multivariate real-valued distributions are of paramount importance in a variety of

fields ranging from computational biology and neuro-science to economics to clima-

tology. Choosing and estimating a useful form for the marginal distribution of each

variable in the domain is often a straightforward task. In contrast, aside from the nor-

mal representation, few univariate distributions have a convenient multivariate gener-

alization. Indeed, modeling and estimation of flexible (skewed, multi-modal, heavy

tailed) high-dimensional distributions is still a formidable challenge. In this work we

present a novel multivariate density model that is a marriage of the copula and Bayesian

networks frameworks. Our construction offers great flexibility in modeling high di-

mensional distributions and results in consistent generalization advantages in varied

domains. In addition, our model gives rise to an efficient mean-field like approximate

inference procedure, facilitating practical structure learning in non-linear domains.

Copulas [11, 15] are functions that link given (or estimated) univariate marginals

into a joint distribution. This allows us to robustly estimate marginals (e.g. using a non-

parametric approach), and then use only few parameters to capture the dependencies.

The resulting model is typically less prone to over-fitting than a fully non-parametric

one, while at the same time avoiding the limitations of a fully parameterized distribu-

tion. This, in turn, often leads to significant generalization benefits. Accordingly, inter-

est in copulas has grown rapidly with applications ranging from mainstream financial

risk assessment (e.g., Embrechts et al. [5]) to off-shore engineering (e.g., Accioly and

Chiyoshi [2]). Unfortunately, constructing high-dimensional copulas is difficult and,

despite many innovations (e.g., [1, 3]), applications are almost always limited to few

(< 10) variables, or build on specific structures or copulas (e.g., [8, 10]).

Bayesian networks (BNs) [13] offer a markedly different approach for density es-

timation that relies on a graph that encodes independencies which imply a decomposi-

tion of the joint density. This facilitates efficient computations, making the framework

amenable to high-dimensional domains. However, the expressiveness of BNs is ham-

pered by practical considerations that almost always lead to simple parametric forms.

Specifically, non-parametric variants of BNs (e.g., [6, 14]) involve elaborate training

setups with a running time that grows unfavorably with the number of samples and

local graph connectivity. Furthermore, aside from the case of the normal distribution,

the form of the univariate marginal is neither under control nor is it typically known.
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We present Copula Bayesian Networks, a multivariate real-valued distribution model

that combines the strengths of both worlds.1 As in BNs, we make use of a graph to en-

code independencies. Differently, we rely on local copula functions along with an

explicit globally shared parameterization of the univariate densities. At the heart of our

approach is a novel reparameterization of a conditional density using a copula quotient.

With this construction, we prove a parallel to the BN composition and decomposition

theorems for joint copulas. The result is a multivariate model that facilitates highly

flexible structure and parameter learning of non-linear high-dimensional models. Im-

portantly, as we demonstrate for three varied real-life domains, our model leads to

consistent and significant generalization benefits.

The unique characteristics of our construction also give rise to a novel variational-

like inference procedure that is significantly more efficient than the similar mean-field

method [7]. This allow us to tackle the computationally daunting task of structure

learning in the face of partial information. Concretely, we learn Copula Bayesian Net-

works that generalize well in domains where learning even simple non-linear Bayesian

networks is computationally prohibitive.
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1This abstracts subsumes the author’s two publications on the topic in the last UAI and NIPS conferences
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