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Abstract. Rectifying neurons are more biologically plausible than sigmoid neurons, which are more biologically
plausible than hyperbolic tangent neurons (which work better for training multi-layer neural networks than sigmoid
neurons). We show that networks of rectifying neurons yield generally better performance than sigmoid or tanh
networks while creating highly sparse representations with true zeros, in spite of the hard non-linearity and non-
differentiablity at 0.

Introduction.
Despite their original connection, there is an important gap between the common artificial neural network models
used in machine learning (such as those used in the recent surge of papers on deep learning, see (Bengio, 2009) for
a review) and several neuroscience observations:

• Various studies on brain energy expense suggest that neurons encode information in a sparse and distributed
way (Attwell and Laughlin, 2001), estimating the percentage of neurons active at the same time from 1 to
4% (Lennie, 2003).

• There are also important divergences regarding the non-linear activation functions assumed in learning al-
gorithms and in computational neuroscience. For example, with 0 input, the sigmoid has an output of 1

2 ,
therefore, after initializing with small weights, all neurons fire at half their saturation frequency. This is bi-
ologically implausible and also hurts gradient-based optimization (LeCun et al., 1998; Bengio and Glorot,
2010). The hyperbolic tangent has an output of 0 at 0, and is therefore preferred from the optimization stand-
point (LeCun et al., 1998; Bengio and Glorot, 2010), but it forces a symmetry around 0 that is not present
in biological neurons. Neuroscience models of neurons spiking rate in function of their input current are
one-sided, have a strong saturation near 0 for their threshold current, and a slow saturation to the maximum
firing rate at important currents. In addition, the neuroscience literature (Bush and Sejnowski, 1995; Douglas
and al., 2003) indicates that cortical neurons are rarely in their saturation regime and can be approximated as
rectifiers.

We propose to explore the use of rectifying non-linearities as alternatives to the sigmoidal (or hyperbolic tangent)
ones, in deep artificial neural networks, using an L1 sparsity regularizer to prevent potential numerical problems
with unbounded activation.

From the computational point of view, sparse representations have advantageous mathematical properties, like in-
formation disentangling (different explanatory factors do not have to be compactly entangled in a dense represen-
tation) and efficient variable-size representation (the number of non-zeros may vary for different inputs). Sparse
representations are also more likely to be linearly separable (or more easily separable with less non-linear ma-
chinery). Learned sparse representations have been the subject of much previous work (Olshausen and Field, 1997;
Doi, Balcan and Lewicki, 2006; Ranzato et al., 2007; Ranzato and LeCun, 2007; Ranzato, Boureau and LeCun,
2008; Mairal et al., 2009), and this work is particularly inspired by the sparse representations learned in the context
of auto-encoders variants, since auto-encoders have been found to be very useful to train deep architectures (Bengio,
2009). In our experiments, we explore denoising auto-encoders (Vincent et al., 2008) for unsupervised pre-training,
but using rectifying non-linearities in the hidden layers. Note that for an equal number of neurons, sparsity may
hurt performance because it reduces the effective capacity of the model.
The rectifier function max(0, x) is one-sided and therefore does not enforce a sign symmetry (like does the ab-
solute value non-linearity |x| used in (Jarrett et al., 2009)) or antisymmetry (like does a tanh(x) non-linearity).
Nevertheless, we can still obtain symmetry or antisymmetry by combining two rectifier units.
The rectifier activation function has the benefit of being linear by parts, so the computation of activations is com-
putationally cheaper, and the propagation of gradients is easier on the active paths (there is no gradient vanishing
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effect on the active paths, as may be seen with deep networks of sigmoid or tanh units). On the other hand, the
hard saturation at 0 may completely block the gradients and make optimization harder. To evaluate the importance
of this potential problem, the softplus (softplus(x) = log(1 + ex)), a smooth version of the rectifier, will also be
investigated.
Finally, the activation of the rectifier being unbounded, the activations and gradients could get to be arbitrary large.
Hence, the L1 sparsity penalty on the activations does not have only the role to enforce sparsity but also to keep
the weights and the activations small. The universal approximation theorem for multi-layer networks concerns only
bounded functions, but we can show that it applies in this case because we can easily create a bounded activation
function by adding two rectifier units.

Experimental results.
Three different classification experiments have been performed. For all of them the model has three hidden layers
with 1000 units per layer (selected, along with learning rates and L1 penalty using a validation set). The supervised
cost is the negative log likelihood of the softmax logistic regression (the output layer). The first experiment is with
10000 training examples from Shapeset, a dataset of grey-level images of simple 2-D shapes (triangles, rectangles
and ellipses) (Bengio et al., 2009). 10000 examples are used for model selection and 10000 as a test set. The second
and the third experiments are with the MNIST digit images (50000/10000/10000 used for training, model selection
and test), respectively with and without unsupervised pre-training (with a denoising auto-encoder (Vincent et al.,
2008)).

Table 1: Left: average sparsity (fraction of zeros) of the hidden layers representation with rectifier units for MNIST
without pre-training, with or without L1 penalty. Right: test error on Shapeset and MNIST without pre-training.

Layer With L1 w/o L1
Layer 1 93.94% 52.23%
Layer 2 80.92% 43.86%
Layer 3 76.66% 37.18%

Neuron type Shapeset MNIST
Rectifier + L1 penalty 28.62% 1.56%
Rectifier 29.86% 1.7%
Softplus 36.58% 1.55%
Tanh 36.64% 1.66%

Table 2: Average error of the 5 best models on MNIST with denoising auto-encoder pretraining

Neuron type Test Valid
Rectifier + L1 penalty 1.16±0.07% 1.15±0.07%
Tanh 1.30±0.12% 1.18±0.05%

First of all, on Shapeset we have a considerable gain using the rectifying activation function (Table 1 (right)).
Shapeset images have variations in contrast and foreground/background grey levels, and we hypothesize that this
is more easily handled with rectifier units, which can propagate continuous-valued quantities, by opposition to
sigmoids or hyperbolic tangents, which saturate and are better suited to represent binary features (or probabilities
over binary events).
An advantage of using the rectifying activation function is that we easily obtain a sparse representation with real
zeros. As shown in Table 1 (left) the amount of sparsity is quite important, with around 80 or 90% zeros. Surpris-
ingly, for the same number of hidden units, the sparsity constraint usually gives better generalization error, even
though it should reduce capacity, and even though the tanh network was not overfitting.
The soft variant of the rectifier (softplus, i.e. with continuous gradients) does not seem to help more than the hard
rectifier (in fact it is usually worse) and it does not produce a sparse representation.
Performance can be further improved by unsupervised pre-training of each layer. The input to the denoising auto-
encoder (with a single hidden layer that is the code layer) is corrupted (here by iid Gaussian noise) and the recon-
struction is compared (by squared error, to be minimized) with the uncorrupted input (Vincent et al., 2008). Each
layer of the deep network is initialized by pre-training it in this way, taking the output code of the previous layer
as its input. The encoder and decoder weights are forced to be the transpose of each other, forcing the encoder to
have a roughly norm-preserving Jacobian, a condition that we believe to be useful for gradient propagation in deep
networks. The corruption process is only used during training of each auto-encoding layer. Substantially better
results are obtained (Table 2) with pre-training, as expected. Interestingly, when using pre-training, a large amount
of sparsity is achieved by rectifier units, even without L1 penalty.
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