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We present a novel form of video scene analysis where functional scene element categories are learned. Many 
functional scene elements, such as roads, parking areas, sidewalks, and entrances, can be segmented and categorized 
based on the behaviors of moving objects in and around them, while distinguishing them based on appearance is very 
difficult. Existing work in video scene modeling has largely focused on segmenting dominant motion patterns [ 1, 2, 4] 
and significant regions such as track sources and sinks [3, 4], given observed trajectories and detection algorithms for 
each scene element type. Our work differs in that we do not attempt to segment the various motion patterns in a scene 
from each other, or to develop detection algorithms specific to any scene element category.  Instead, our method 
consists of: 1) developing a common feature-space representation for all behavioral scene element categories; 2) 
learning behavioral category models using the representation, in an unsupervised fashion, independent of scene 
location; 3) segmenting video scenes into the functional categories. 

We view the problem from the perspective of categorical object recognition. Our approach identifies regions 
(functional scene elements) with similar behaviors in the same scene and/or across scenes, by clustering histograms 
based on a trajectory-level, behavioral codebook. A cluster of such objects corresponds to a functional category that can 
be assigned a conceptual label. We test our method on two scenes, using data acquired from in-the-wild web cams. Web 
camera data is challenging because it is often low resolution (spatially and temporally) with compression artifacts and 
noise. 

Figure 1 contains an illustration of our learning and classification process. Our approach adapts the bag-of-words 
concept to trajectory-level behavioral analysis. First, on each video scene, tracks are computed for a period of time that 
is sufficient to capture the range of activity in the scene (typically a few hours or a day). We assume that the cameras are 
roughly calibrated to the ground plane, so that ground-plane tracking and normalization may be performed. Each video 
scene is partitioned into a set of regions, such as a regular spatial grid in the ground plane. 

 
Figure 1. Unsupervised modeling architecture. 

Next, a descriptive set of behavioral features is computed. For each track, and for each grid cell that the track 
intersects, low-level features capture single-object, local, behavioral and object characteristics such as velocity, heading 
change, speed change and size within the cell and in the nearby area. Within each cell, the low-level features are 
accumulated to form feature distributions in each cell. More significantly, mid-level features capture the relationship 
between cells traversed by the same track, and localized relationships between tracks over time. In total, the feature set 
characterizes local behaviors in the same way that patch descriptors characterize local appearance for object 
recognition. Our features are not tied to specific scene locations, allowing us to build models that generalize across 
scenes.  

The feature vectors are clustered using mean-shift (or K-means) to form a codebook of a size that is comparable 
to the number of cells. For each cell on the ground plane, a codebook histogram is formed by finding the closest 
centroid for each feature vector in the cell. Cells are then clustered using mean-shift with the cell codebook histogram as 
the feature vector.  

Figure 2 and Figure 3 contain results on two web-cam scenes including ground truth and PCC tables. In the first 
scene, Ocean City, we trained the functional scene element models using data from the Ocean City scene. We then 
classified the scene elements in that scene using the learned models. The second scene, Ware, was classified using the 
scene element models learned from the Ocean City scene. The models capture background, parking, and road regions 
particularly well. The PCC for road on Ware (0.75) is nearly as good as Ocean City (0.78). The sidewalk results on Ware 
are actually better (0.475) than Ocean City (0.3571). Parking results are good on Ocean City, but did not transfer well to 
Ware. Doorways were poor on both scenes. We plan to add additional features which capture acceleration and 



deceleration at the ends of tracks to help improve the classification of both doorways and parking areas. We are 
encouraged by these initial results, especially since several categories were learned on one scene and generalized well to 
another scene. 

 

 

Class Background Doorway Parking Road Sidewalk  PCC 

Background 621 0 20 19 7 0.931 

Doorway 2 0 0 0 2 0 

Parking 1 0 31 0 1 0.9394 

Road 0 0 11 39 0 0.78 

Sidewalk 7 0 20 0 15 0.3571 
 

Figure 2. Unsupervised functional recognition results on Ocean City. 
 

 

 

Class Background Doorway Parking Road Sidewalk  PCC 

Background 391 0 0 4 14 0.956 

Doorway 0 0 0 1 7 0 

Parking 1 0 0 1 7 0 

Road 37 0 0 126 5 0.75 

Sidewalk 119 0 0 7 114 0.475 
 

Figure 3. Unsupervised results on the Ware web camera using functional element models learned on Ocean City. 
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