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1 Introduction

A common approach in domain adaptation (DA) [1] and mulkitearning (MTL) [2] is to create an expanded feature
representation by sharing features across domains (in DArss tasks (in MTL) and then learning a classifier
over this expanded feature set. In this paper, we refer tb ®ahniques afeature sharing algorithms (FSAPne
such FSA is BSYADAPT [1], which takes each feature in the original problem andicates it three times: general,
source-specific and target-specific. In thigendedeature space the source data will contain general and sourc
specific features whereas the target data will contain génad target-specific featuresAEYADAPT is simple, easy

to implement as a preprocessing step and outperforms méstingechniques [1, 3], namelyO®RCEONLY (target
hypothesis trained on labeled source data onlxXRGETONLY (target hypothesis trained on labeled target data only),
ALL (combination of source and target labeled data) armbR (target hypothesis trained withOBRCEONLY as a
prior on the weight vector) [4]. However, a theoretical analysissby EASYADAPT performs better than the other
aforementioned approaches is clearly missing.

In this abstract, we present such an analysis. In order t@eelur goal, we model £&SYADAPT in terms of
co-regularization This is an idea that originated in the context of multivi@aurning and for which there exists some
theoretical analysis [5].

We denote source and target empirical errors for some hgpisth asé (h) andé;(h) and the corresponding
expected errors as(h) ande;(h). PRIOR and EASYADAPT optimize the following cost functions:
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&(h) + Aol ||+ Allhs — Bl where, h, — argmin{é,(h) + Ao| 1]} (1.1)
h
Qpa = aég(h1) + (1 —a)éi(ha) + Mllha|” + Xa||ha|* + Al[hy — ho|? (1.2)

In the above, we assume that our hypothesis class is cordprfseeal-valued functions over an RKHS with
reproducing kernek(-,-),k :X xX — R. Let us also define the kernel matrix and partition it coroggfing to
As><s CVs><t
Cixs Bixt
subscripts denote the domains whose data have been utitizeahstruct these submatrices. Assume that the loss
function is bounded by. Proceeding in a manner similar to [5] (cf. section 3.1) wbssitute trivial hypotheses
h = hy = hy = 0in all the cost functions which makes all regularizers andegularizers). Assuming that the
loss function is bounded by, we getQ < 1 for all cost functions. So we can define the base hypothesss ds:

H = {(h1, h2) : Ml |hal[? + Aol [ha|[? + Al |h1 — hal]* < 1}

By fixing h1 = hs a priori and making\; = 0, we can define the target hypothesis classes faoR as:
Thp = {h2 : X — R, (hs,h2) € H, 1 = 0}. Target hypothesis classes fon&ADAPT is given by: 7} , :=
{ha : X — R, (h1,h2) € H}. The respective source hypotheses are defined’gg: := {h : \||h]|> < 1} and
Ty i=1{h1: X = R, (h1,h2) € H}

source labeled and target labeled datakas= , where A,B,C are kernel submatrices and the

2 Theoretical Results

We present the following two theorems (without proof) whprevide upper and lower bounds on the complexity of
the source and target hypothesis classes ROR (7} ;) and EASYADAPT (75 4)-



Theorem 2.1. For the hypothesis clas§} , if we defineR,,(J5r) = Es SUPp,e gy, | 20, oihe(2)], then we have,

3525 < Run(Thp) < 255 where (Chp)? = 1= (|2 (% + 55) 7" | s tr(B) and|h|1? < -
It can be observed that the complexity decreases with isgrgaorm of source hypothesis. The complexity
also decreases with increase in the value of hyperparasnesard \,. The complexity of source hypothesis class for

PRIOR has the same form as that cbGRCEONLY, which is given by

- 2
Rin(Tpr) < 5 (tr(A)/2)'7?2 (2.1)
Theorem 2.2. For the hypothesis clasg}, , if we defineR,, (7% ,) = E- SUpp,e e, |22 oiha(x)|, then we have,

T5 N < Rn(Tha) < 2584 where,(Cl)* = (ﬁ)”@)-
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The complexity of RSYADAPT class also decreases with an increase in the values of terpenpters. It decreases
more rapidly with change in, compared to\ and ;. The kernel block submatrix corresponding to source sasnple
does not appear in any of the target class bounds. Due to thesiry of EASYADAPT cost function in source and
target hypothesis, the complexity of source hypothesissatan be bounded by
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Th. 2.2 is required to obtain the bound on the target hyp&totsss of BSYADAPT and subsequently bound the
source hypothesis class using symmetry arguments. So, nveorapare either of Th. 2.2 or Eq. 2.2 with Eq. 2.1.
Assuming,A\s; = A; and all other parameters remaining the same, the upper bufubgl. 2.2 is smaller than that of
Eq. 2.1. Hence, we claim that the complexity oAE€rADAPT source class (Eq. 2.2) is less than the complexity of
PrRIOR source class (Eq. 2.1). Generalization bounds e ¥ADAPT and RRIOR can be obtained by plugging in the
source class complexities in the rademacher complexigbgsneralization bound expressions [6]. If we compare the
source class complexities oORFOR and EASYADAPT, it can be easily seendSYADAPT provides better generalization
performance on target. Hence, this framework nicely exgl#tie superior performance oAEYADAPT compared to
PRIOR.

A careful analysis of the above results also reveadanotion of domain similarity in terms of the traces of the
kernel submatriced (constructed from source samples) d@@constructed from target samples). If source and target
domains are similar then we hatg A) ~ tr(B), whereas these trace values are considerably differdre domains
are far apart. In addition, this notion of domain similaig}computable from finite source and target samples.

< Roy(Tga) < where (C54)% =

_1)tr(A), (2.2)

3 Discussion

Empirical results in [1] showed thatASYADAPT outperforms RIOR on a wide variety of tasks, but no theoretical
justification was provided for this superior performances Néve theoretically analyzedAEYADAPT and explained
its superior performance oveRFOR. It would be interesting to explore whether the obtainednaisucan be further
tightened by leveraging unlabeled data indrADAPT.
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