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1 Introduction

A common approach in domain adaptation (DA) [1] and multitask learning (MTL) [2] is to create an expanded feature
representation by sharing features across domains (in DA) or across tasks (in MTL) and then learning a classifier
over this expanded feature set. In this paper, we refer to such techniques asfeature sharing algorithms (FSA). One
such FSA is EASYADAPT [1], which takes each feature in the original problem and replicates it three times: general,
source-specific and target-specific. In thisextendedfeature space the source data will contain general and source-
specific features whereas the target data will contain general and target-specific features. EASYADAPT is simple, easy
to implement as a preprocessing step and outperforms many existing techniques [1, 3], namely, SOURCEONLY (target
hypothesis trained on labeled source data only), TARGETONLY (target hypothesis trained on labeled target data only),
ALL (combination of source and target labeled data) and PRIOR (target hypothesis trained with SOURCEONLY as a
prior on the weight vector) [4]. However, a theoretical analysis of why EASYADAPT performs better than the other
aforementioned approaches is clearly missing.

In this abstract, we present such an analysis. In order to achieve our goal, we model EASYADAPT in terms of
co-regularization. This is an idea that originated in the context of multiview learning and for which there exists some
theoretical analysis [5].

We denote source and target empirical errors for some hypothesish as ǫ̂s(h) and ǫ̂t(h) and the corresponding
expected errors asǫs(h) andǫt(h). PRIOR and EASYADAPT optimize the following cost functions:

QPR = ǫ̂t(h) + λ2||h||2 + λ||hs − h||2 where, hs = argmin
h

{ǫ̂s(h) + λs||h||2} (1.1)

QEA = αǫ̂s(h1) + (1 − α)ǫ̂t(h2) + λ1||h1||2 + λ2||h2||2 + λ||h1 − h2||2 (1.2)

In the above, we assume that our hypothesis class is comprised of real-valued functions over an RKHS with
reproducing kernelk(·, ·), k :X ×X 7→ R. Let us also define the kernel matrix and partition it corresponding to

source labeled and target labeled data asK =

(

As×s Cs×t

C′
t×s Bt×t

)

, whereA,B,C are kernel submatrices and the

subscripts denote the domains whose data have been utilizedto construct these submatrices. Assume that the loss
function is bounded by1. Proceeding in a manner similar to [5] (cf. section 3.1) we substitute trivial hypotheses
h = h1 = h2 = 0 in all the cost functions which makes all regularizers and co-regularizers0. Assuming that the
loss function is bounded by1, we getQ ≤ 1 for all cost functions. So we can define the base hypothesis class as:
H := {(h1, h2) : λ1||h1||2 + λ2||h2||2 + λ||h1 − h2||2 ≤ 1}.

By fixing h1 = hs a priori and makingλ1 = 0, we can define the target hypothesis classes for PRIOR as:
J t

PR := {h2 : X 7→ R, (hs, h2) ∈ H, λ1 = 0}. Target hypothesis classes for EASYADAPT is given by:J t
EA :=

{h2 : X 7→ R, (h1, h2) ∈ H}. The respective source hypotheses are defined as:J s
PR := {h : λs||h||2 ≤ 1} and

J s
EA := {h1 : X 7→ R, (h1, h2) ∈ H}

2 Theoretical Results

We present the following two theorems (without proof) whichprovide upper and lower bounds on the complexity of
the source and target hypothesis classes for PRIOR (J t

PR) and EASYADAPT (J t
EA).
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Theorem 2.1. For the hypothesis classJ t
PR if we defineR̂m(J t

PR) = Eσ suph2∈J t

PR

|∑i σih2(x)|, then we have,

1
4
√

2

2Ct

PR

Nt
≤ R̂m(J t

PR) ≤ 2Ct

PR

Nt
where,(Ct

PR)2 =

[

1 − ||hs||2
(

1

λ + 1

λ2

)−1

]

1

λ2+λ tr(B) and||hs||2 ≤ 1

λs
.

It can be observed that the complexity decreases with increasing norm of source hypothesishs. The complexity
also decreases with increase in the value of hyperparametersλ andλ2. The complexity of source hypothesis class for
PRIOR has the same form as that of SOURCEONLY , which is given by

R̂m(J s
PR) ≤ 2

Ns
(tr(A)/λs)

1/2 (2.1)

Theorem 2.2. For the hypothesis classJ t
EA if we defineR̂m(J t

EA) = Eσ suph2∈J t

EA

|∑i σih2(x)|, then we have,

1
4
√

2

2Ct

EA

Nt
≤ R̂m(J t

EA) ≤ 2Ct

EA

Nt
where,(Ct

EA)2 =

(

1

λ2+

“

1

λ1
+ 1

λ

”

−1

)

tr(B).

The complexity of EASYADAPT class also decreases with an increase in the values of hyperparameters. It decreases
more rapidly with change inλ2 compared toλ andλ1. The kernel block submatrix corresponding to source samples
does not appear in any of the target class bounds. Due to the symmetry of EASYADAPT cost function in source and
target hypothesis, the complexity of source hypothesis class can be bounded by

1
4
√

2

2Cs
EA

Ns
≤ R̂m(J s

EA) ≤ 2Cs
EA

Ns
, where (Cs

EA)2 =

(

1

λ1 +
(

1

λ2

+ 1

λ

)−1

)

tr(A), (2.2)

Th. 2.2 is required to obtain the bound on the target hypothesis class of EASYADAPT and subsequently bound the
source hypothesis class using symmetry arguments. So, we can compare either of Th. 2.2 or Eq. 2.2 with Eq. 2.1.
Assuming,λs = λ1 and all other parameters remaining the same, the upper boundof Eq. 2.2 is smaller than that of
Eq. 2.1. Hence, we claim that the complexity of EASYADAPT source class (Eq. 2.2) is less than the complexity of
PRIOR source class (Eq. 2.1). Generalization bounds for EASYADAPT and PRIOR can be obtained by plugging in the
source class complexities in the rademacher complexity based generalization bound expressions [6]. If we compare the
source class complexities of PRIOR and EASYADAPT, it can be easily seen EASYADAPT provides better generalization
performance on target. Hence, this framework nicely explains the superior performance of EASYADAPT compared to
PRIOR.

A careful analysis of the above results also reveal anewnotion of domain similarity in terms of the traces of the
kernel submatricesA (constructed from source samples) andB (constructed from target samples). If source and target
domains are similar then we havetr(A) ≈ tr(B), whereas these trace values are considerably different if the domains
are far apart. In addition, this notion of domain similarityis computable from finite source and target samples.

3 Discussion

Empirical results in [1] showed that EASYADAPT outperforms PRIOR on a wide variety of tasks, but no theoretical
justification was provided for this superior performance. We have theoretically analyzed EASYADAPT and explained
its superior performance over PRIOR. It would be interesting to explore whether the obtained bounds can be further
tightened by leveraging unlabeled data in EASYADAPT.
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