
 

Functional object recognition in video is an emerging problem in visual surveillance and video scene 

understanding. By functional objects, we mean objects with a specific purpose such as a postman or delivery truck, 

which are defined more by their actions and behaviors than by appearance. Examples of delivery and trash trucks are 

shown in Figure 1. The two major challenges that arise from using videos are: (1) learning functional models that 

capture location-independent behavioral semantics, and (2) track fragmentation due to imperfect visual tracking. In 

this work, we present an approach for content-based learning and recognition that effectively addresses these issues. 

   

Figure 1. Examples of Functional objects: (Left) delivery truck, and (Middle) trash truck, among (Right) all tracks. 

Tracks belonging to human and vehicle movers are shown in red and green respectively for delivery and trash truck 

examples where fragmentation is clearly visible. Blue tracks are other tracks that occurred concurrently. 

We have formulated a two-level representation to model functional object behavior over time in the presence of 

track fragmentation. At the lower level, all the collected tracks are clustered based on features relating them to scene 

elements, resulting in models corresponding to different categories of low-level behaviors such as “walking on 

sidewalk” and “crossing road”. At the higher level, composite functional object models are learned in a supervised 

fashion, using the low-level elementary functional models as building blocks. Each track is quantized based on 

learned clusters and higher-level models are learned from these quantized data, abstracting away low-level 

information. Full positive examples are given in the form of manually linked tracks exhibiting each function. In 

terms of modeling regimes, we have investigated three approaches: (1) unigrams, (2) bigrams, and (3) HMMs.  

Our solution for location-independent semantic low-level behavior learning is to incorporate scene context to 

characterize tracks. By scene context, we mean local scene regions with different functionalities such as doorways, 

parking spots and roads, which moving objects often interact with (see Figure 2). Every track is encoded with 

Boolean features which capture its relations and actions w.r.t. existing scene contexts, e.g., 'MoveTo' or 'AwayFrom'. 

39 features are computed and used to cluster tracks into elementary functional behaviors. Two example clusters 

(among 11 total clusters) are shown in Figure 2, with reasonable high-level semantic interpretations. Our semantic 

grouping results are qualitatively different from previous work on trajectory analysis where tracks are primarily 

grouped based on their location information [1][2]. Multiple clustering approaches have been explored: K-means, 

mean-shift, affinity propagation [4], and spectral clustering [3]. We have found affinity propagation to produce 

semantically interpretable results with minimal parameter tuning efforts. 

   

Figure 2. Left – manual scene context: road (green), parking spots (light blue), sidewalks (yellow), doorways (red), 

and trash cans (dark blue). Learned elementary behavior clusters: (middle) parking and (right) walking on sidewalk. 
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 Higher level functional models are learned from positive 

examples of linked tracks exhibiting each behavior. Histograms 

of quantized low-level behaviors are used for unigram and 

bigram models, where the latter encodes sequential pairs of 

behaviors. We also explored HMMs of behavioral words. 

Recognition in the presence of track fragmentation is 

addressed by a track linking classifier using standard 

Adaboost.M1 [5] trained on manually-labeled pairs of tracks 

from the same object as positive examples, and random pairs as 

negative examples. Instead of individual track features, vectors 

encoding the similarity between pairs of track features are used. 

In our test, the learned link classifier delivered 99% recall and 

false-alarm rate of 0.9%. Figure 3 shows an example result 

with both correct recalls and false alarms. 

Sequences of tracks with higher link probabilities are formed into functional behavior hypotheses. Each linked 

hypothesis is evaluated against the full functional behavior models, using Bhattacharyya distances for unigrams and 

bigrams, and data-likelihood for HMMs. In our experiments, there were 20-2500 hypotheses for ~10 minutes of 

video, depending on functional class. We used uncontrolled webcam video of a retail street scene, with significant 

tracking difficulties from low frame rates (1-2Hz), low resolution and severe noise. We considered four functional 

categories: delivery person, delivery truck, road cleaning vehicle, and trash truck. Experiments were conducted in 

leave-one-out fashion with 7 to 15 exemplars per category. In addition, experiments were repeated using 

automatically learned scene context, which is less accurate but more desirable. The ROC curve for the delivery truck 

class and average percentile of true examples among all generated linked hypotheses are shown in Figure 4. An 

important finding is that simpler models of unigrams and bigrams consistently generate more accurate recognition 

results than more complex HMMs; this is likely due to the limited number of training examples. 

Given the difficulty of the functional recognition problem in real-world settings, these initial results are promising 

results. We plan to apply the approach to diverse scenes and larger number of functional object categories. 

 
Figure 4. (Left) ROC curves for delivery truck class. 'Auto' refers to the use of less-accurate learned scene context clusters, 

while 'Manual' refers to manual labels. (Right) Average ranking ratios of true samples for all categories. 
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Figure 3.  Detected links overlaid (cyan) on the 

example of a delivery truck shown in Figure 1. 


