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1 Introduction

We consider an inference setting for probabilistic graphical models where the graph consists of two type of
nodes. On one (the max nodes), we want to compute the MAP estimates; on the other (the sum nodes) we
want to compute the marginals. More formally, let pθ(x, z) = exp [〈θ, F (x, z)〉 −A(θ)] be the exponential
family probability distribution defined by a graphical model, where F (x, z) is the enumeration of all nodes
(x represents max nodes and z sum nodes) and all edges between sum nodes, max nodes and connecting
sum and max nodes. The log partition function A(θ) = log

∑
x,z exp[〈θ, F (x, z)〉]. In our setting, we only

care about the maximum a posteriori (MAP) estimates for x nodes, but sometimes the marginals on z are
also probably useful. The former problem can be written formally as the following maximization problem:
arg maxx

∑
z pθ(x, z). A typical example is a latent variable model where the xs are variables we really care

about, and the zs are often nuisance or latent variables.

In such settings, the Expectation-Maximization algorithm [1] can be an obvious choice if the marginal
posterior in the E-step can be computed in closed-form. If not, then the E-step can use Monte-Carlo
simulation. However, EM can still be prone to getting stuck in a local maxima. Alternatively, [2] proposed
an MCMC-based algorithm for direct maximization of marginal posterior distributions by introducing an
artificially augmented probability model, whose sampling gives marginal-MAP estimates of the variables of
interest. However, this approach also suffers from the local maxima problem. To deal with this issue, [3]
proposed a Sequential Monte Carlo based approach (and similar to simulated annealing) which is much less
sensitive to initialization than EM and MCMC algorithms. In our work, we take a different approach and
show how message-passing algorithms for graphical models can be used to obtain marginal-MAP estimates
in a variational framework [4]. We also show connections of our algorithm to the generalized EM algorithm.

2 Marginal-MAP Estimation using Message-Passing

Sum-product and max-product are the basic algorithms for computing marginals and MAP estimates respec-
tively, in probabilistic graphical models. For our setting where we want marginals for one set of nodes and
MAP estimates for the other set, one can still run sum-product or max-product algorithms over the graph,
and choose the assignments according to the maximum of sum or max marginal values for each random
variable. However, using max-product only will inevitably ignore the effect of sum-nodes z, whereas using
sum-product only will ignore the effect of max nodes x.

In this work, we present a hybrid algorithm (which is based on using a mix of sum and max messages) where
the outgoing message of a node is decided by the type of the node. The updates are as follows:

• Message from sum node t: Mts(xs)← κ
∑

x′
t∈χt
{exp[θst(xs, x

′
t) + θt(x′

t)]
∏

v∈N(t)\s Mvt(xt)}

• Message from max node t: Mts(xs)← κ maxx′
t∈χt
{exp[θst(xs, x

′
t) + θt(x′

t)]
∏

v∈N(t)\s Mvt(xt)}
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When the messages converge, the node marginals are obtained from p(xs; θ) = κ exp{θt(xt)}
∏

t∈N(s) Mts(xs)
and κ is a normalization constant. For those max nodes, the assignment of node xs is given by arg maxxi∈Xs p(xs(xi)).

3 Generalized EM based Interpretation

It turns out that the hybrid (sum-product/max-product) message-passing algorithm we propose turns out
to be an instance of the generalized EM algorithm. To see this, consider the conditional: pθ(x | z) =

exp[〈θ,F (x,z)〉−A(θ)]
P

x exp[〈θ,F (x,z)〉−A(θ)] = exp [〈θ, F (x, z)〉 −Bz(θ)], where Bz(θ) =
∑

x exp [〈θ, F (x, z)〉]. The same yields
pθ(z | x) = exp [〈θ, F (x, z)〉 − Cx(θ)], where Cx(θ) =

∑
z exp [〈θ, F (x, z)〉]. Now, (generalized) EM works by

maximizing: Ez∼pθ(z | x) log pθ(x | z). By plugging in the expression for log pθ(x | z) and dropping irrelavent
terms, this leads to:∑

x,i

θx,i +
∑
z,j

µz(j)θxz,ij

x(i) +
∑

x1x2,ij

θx1x2,ijx1(i)x2(j) + Const. (1)

Regarding the “E” step, we need to compute these marginals. Following from above, we want the marginals
of pθ(z | x). This can be done by just fixing the x values at their MAP solutions and running sum-product
on the zs with no additional modifications (that is, the “messages” coming out from x nodes are just 100%
confident messages at their MAP value). For “M” step, it is nothing but running max product with potentials
on x nodes modified according to equation (1). It is possible to only run one single message pass for each
step and this is equivalent to the hybrid message passing algorithm.

4 Experiments
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Figure 1: Comparison of various algorithms for MAP
estimates

We compare our hybrid messsage passing algorithm
against plain sum-product and plain max-product based
MAP estimate on synthetic data. For our preliminary
experiments, our synthetic data is a chain of 10 nodes
(The results of lattice with 10 nodes are similar).

Fig 1 shows the loss on the assignment of max nodes.
As we can see, with the increasing percentage of sum
nodes, the accuracy of max-product decreases and sum-
product increases, However, our algorithm always results
in the smallest loss of the three. Meanwhile, the mean
of discrepancy (not shown here) for the three algorithms
on marginals compared to the true marginals of p(z|x)
when there are 20% sum nodes is 0.4849 for max prod-
uct, 0.4399 for sum product, 0.4713 for our algorithm.
When the percentage of sum nodes increases to 80%, the
corresponding means are 1.0693, 0.6501 and 0.6776. The
performance of our algorithm on sum nodes beats max
product and is close to that of sum product. Moreover,
the iterations of our algorithm to converge is no more
than the maximum of that of sum and max product and
is much less than that of EM.
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