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Introduction
Recognition of human activity from video data is a challenging problem that has received an increasing amount of attention

from the computer vision community in recent years. The ability to parse high-level visual information has wide-ranging

applications that include surveillance and security, the aid of people with special needs and the understanding of human

non-verbal communication. Most of the methods proposed for human activity recognition have borrowed ideas from

another task: object recognition, which has been dominated by methods that represent each image as a “bag of features”

using hand-crafted descriptors applied to image patches. Therefore the majority of methods proposed follow a similar

trajectory: detect local interest points, compute a representation of a window of pixels around each of these points using

an engineered descriptor, quantize the local space-time features, represent each sequence as a spatio-temporal “bag of

features”, and then feed to a classifier. Most of the effort has been made in designing space-time interest-point detectors

[1, 2, 3] and descriptors [4, 5, 3] and up to this point, learning has not played much of a role in advancing the field.
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Figure 1: Our proposed architecture.

A video is decomposed into spatio-

temporal cubes. These are processed

by two layers of learned feature de-

tectors and a max-pooling layer be-

fore classification.

There is much evidence that learning feature detectors in a supervised setting

[6], unsupervised setting [7, 8, 9], or semi-supervised [10] can improve perfor-

mance in vision tasks, including object recognition. However, other than [11], we

know of no methods that attempt to use learning at the level of feature-detectors to

improve human activity recognition. This may be due to the prohibitive computa-

tional cost of learning descriptors on video. Standard datasets for activity recogni-

tion (e.g. [12, 13]) contain typically an order of magnitude more pixels than com-

mon datasets for object recognition. However, with the advent of general-purpose

GPU computing, and its growing popularity in learning features from images [14],

it is now worth considering large-scale feature learning on these datasets.

The first contribution of this paper is to address the problem of learning feature

detectors for use in human activity recognition. Specifically, we focus on a recently

proposed type of conditional random field called the gated Restricted Boltzmann

Machine (GRBM) [15] which learns distributed, domain-specific representations

of image transformations. Fundamental to all of the leading activity recognition

methods is a step where spatio-temporal descriptors are quantized to generate a

“bag-of-words“ codebook (typically using K-means). In an attempt to easily ob-

tain compact video representations, much of the potentially useful discriminative

power of the descriptors is lost. A second contribution of this paper is to to ad-

dress this issue. We argue and demonstrate that sparse, overcomplete distributed
representations are more appropriate for video analysis.

Method
Our proposed architecture is shown in Fig. 1. We first apply local contrast normalization to each of the pixels in the input

video. Then we extract local space-time “cubes” from the normalized video. In the first phase of unsupervised learning

we estimate so-called latent “transformation-codes” that model local appearance and motion of the space-time cubes (see

Fig. 2). Given low-level codes, we infer longer-term/mid-level encodings with a sparse dictionary learning method [16].

Finally max-pooling is used to find a sparse, vector representation for the video which is then fed to an SVM classifier.

Experiments
We evaluated our method on two publicly available datasets intended for benchmarking human activity recognition. Using

NVIDIA GPU hardware, it takes about a day to train our low-level feature detectors on millions of image patches.

KTH actions The KTH actions dataset [12] is the most commonly used dataset in evaluating human action recognition. It

consists of 25 subjects performing six actions, under 4 scenarios. Each sequence is further divided into shorter “clips” for

a total of 2391 sequences. We use the original training and test split so our results are directly comparable to the recent

survey by Wang et al. [17]. Our approach using the GRBM descriptors and sparse coding with 4000 dictionary elements,

gives a mean accuracy of 89.1±0.4 (averaged over 10 runs). This is, to the best of our knowledge, the best performance

on KTH amongst methods that do not use interest-point detection. The currently best performing method [5] uses the

STIP interest-point detector and and HOG/HOF or HOF descriptors (91.8 and 92.1%, respectively). All of the descriptors

to which we compare use some sort of explicit local geometry (e.g. computing the histograms in a fixed number of spatial

regions). All local geometrical information used by our descriptor is captured implicitly in the learned weights.



(a) Input, x (patch t − 1) (b) Output, y (patch t) (c) Encoding, z (d) Reconstruction, ŷ

Figure 2: Random pairs of normalized image patches extracted from the KTH actions dataset: a) Patches at frame t − 1.

b) Patches at frame t. c) Given each pair of patches, we can infer the corresponding transformation code. The codes are

vectors, but we have reshaped them to 2-d for easier viewing. Note that that the features are most active when there is

motion (compare patches A-C which contain body movement, compared to patches D-F which are either background or

stationary body parts.) d) The model’s reconstruction of the output, given input and transformation code.

Hollywood2 The Hollywood2 dataset [13] consists of a collection of video clips containing 12 classes of human action ex-

tracted from 69 movies. It totals approximately 20.1 hours of video and contains approximately 150 samples per action. It

provides a more realistic and challenging environment for human action recognition by containing varying spatial resolu-

tion, camera zoom, scene cuts and compression artifacts. Performance is evaluated as suggested by Marszalek et al. [13]:

by computing the average precision (AP) for each of the action classes and reporting mean AP over all actions. We achieve

an AP of 46.6±0.8% using dense sampling, learned GRBM low-level features and sparse coding with 4000 elements. The

best known score (47.4%) uses dense sampling with HOG/HOF features and quantization [17]. Our result outperforms all

other known published results, including popular methods like Cuboids [1] (45.0%) and Willems et al. [3] (38.2%).

Conclusion
We present an architecture for human activity recognition that differs from the majority of existing methods in two major

ways: 1) Instead of using hand-crafted spatio-temporal interest-point detectors and descriptors we densely sample videos

and learn our descriptors using millions of patches; and 2) Rather than mapping descriptors to a spatio-temporal “words”,

we represent them as sparse linear combinations of atoms from a trained dictionary. Our learned feature detectors are

sensitive to motion and perform a kind of implicit interest-point detection that is data-adaptive.

Among dense sampling methods, we achieve the current best score on the KTH actions dataset (methods that em-

ploy explicit interest-point detectors still outperform our approach). We are able to scale our architecture to perform

competitively against state-of-the-art approaches on the challenging Hollywood2 dataset that contains over 20 hours of

high-resolution video. Concerning computational cost: although it takes about a day to train the first-layer, at test-time

our model is roughly equivalent to other state-of-art methods that employ dense sampling.

Our results support the so-called “deep learning” philosophy which advocates learning multiple layers of distributed

representations. We intend to scale our method up to use additional sparse, overcomplete layers. Our long-term goal is

to abandon a patch-based approach and train our model convolutionally, employing spatial and temporal pooling layers to

permit scale and shift invariance. Finally, as more labeled video data becomes available, we plan to investigate training

the lower layers on multiple datasets and global training of all layers.
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