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Identifying causality in multivariate time-series data is a topic or significant interest due to its
many applications in fields as diverse as neuroscience, economics, climate science, and microbiology
to name a few.

In many applications, one is presented with multiple multivariate time-series rather than a single
one. For instance, climate and meteorological data are collected at a variety of different location on
the globe, with different instruments and measurement protocols; gene expression microarray data
are collected for different species, under different conditions, and by different labs. Moreover, one can
usually identify relationships between these different time-series, such as time-series being collected
at neighboring locations in the case of climate data, or microarray experiments being conducted
on the same species, or under the same conditions. These relationships define a “relational graph”
among the different time-series where related time-series are connected by an edge.

Given such relational time-series data, one faces the question of how to infer the causal structure
for each time-series in manner that is more flexible than requiring a common causal graph for all
time-series, while, at the same time, avoiding the brittleness due to data scarcity if one were to
independently learn a different causal structure for each time-series. At a first approximation, the
solution we propose in this paper can be viewed as finding a middle ground between these two
extremes by partitioning the time-series into subsets of that share the same causal structure, and
pooling the observations from all the time-series in a subset to learn more robust causal graphs.

Specifically, we define a hidden Markov Random Field (hMRF) on the relational graph, and
assign a hidden state to each node (time-series). Nodes that share the same state in the hMRF
will have the same causal graph. The particular notion of causality we use in this paper is that of
“Granger Causality” [Gra80], which has proven useful as an operational notion of causality in time
series analysis in the area of econometrics, and has become popular in many other fields. Granger
causality is based on the intuition that a cause should necessarily precede its effect, and in particular
that, if a variable causally affects another, then the past values of the former should be helpful in
predicting the future values of the latter. Following [ALA07] we use an L1 regularized regression
approach to efficiently detect Granger causality in multivariate time-series.

While we described the model in terms of hard partitioning of the time-series to ease understand-
ing, in reality the model maintains a soft partitioning throughout learning. This leads to a form of
transfer learning when inferring the causal graphs associated with different states. This makes our
model applicable even in situations where partitioning the time-series might not seem appropriate.

We test our model on a synthetic dataset where the relational graph is a 10x10 grid, and data is
generated from two hidden states. Results are presented in Figure 1 and show higher performance
when compared to learning a single graph for all time-series (ALL), and learning independent graphs
for each time-series (SUB).

We also apply the model to a climate modeling problem. The learned causal graphs for three
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Figure 1: Comparison results on Simulation Data.

hidden states are shown in Figure 3 (we only show temperature for better visualization). Figure 2(a)
shows the assignment of locations to the different states. The results seem reasonable (compared
with the US CO2 concentration map in Figure 2(b)) in that the green (diamonds) state corresponds
to the mid-north part of the country, where the region is cold and temperature is affected by the
number of frost days, the red (circles) state represents the developed regions in the south, west
and east of the US, where the CO2 concentration is high enough to influence temperature (i.e. the
greenhouse effect), while the blue (squares) state is dominant in central less populated area with
less CO2 concentration.
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Figure 2: Predicted states for each location.
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Figure 3: Causal graphs learned for each state.
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