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1 Introduction

Recently, there has been a significant interest in Multi-Task Learning (MTL) where multiple tasks are learned
simultaneously to achieve better learning models. It has been shown [3, 4, 7] that learning multiple tasks
together help the learning given that, these tasks are related and one is able to use the right notion of task
relatedness.1 There exist many notions of task relatedness, one of the widely believed is: Two tasks are
related if their parameters are close [5, 6]. Our work is motivated by a simple counter example of this notion.

Consider a binary classification task t that classifies the given data into two categories. Let w be the
optimal weight vector of the linear classifier associated with this task. Now construct an artificial binary
classification task u by flipping the labels of the given data; the weight vector of the classifier associated
with this task u would be −w. Now it is obvious that while tasks t and u are highly related (they are
basically the same tasks), their parameters are far from each other (2‖w‖ distance apart). In this example
task t is just a reflection of task u. Similar counter examples can be constructed by choosing different
transformations between t and u e.g. translations, rotations. In this work we give an assumption free notion
of task relatedness that is based on such transformations, and is naturally derived from the data. Informally,

Two tasks are said to be related if one task can be transformed into other task by applying some trans-
formation function on the learning function associated with the first task or vise versa. The amount of
relatedness is measured in terms of the complexity of the transformation function.

2 Approach

We now briefly describe the proposed MTL framework based on the transformation between tasks [1, 2]. We
begin with some notations. Let X be the domain for all tasks2, Xt ⊂ X be the set of training examples for
task t and Yt be the set of corresponding class labels. Given such example-label pairs (Xt,Yt), the goal is to
learn the function ft such that for each x ∈ X, ft gives the corresponding label. Let T be the total number
of tasks and f1, . . . fT be the classification functions for these tasks. Now we define a new set of functions
called transformation functions between tasks. Let Gij be such a transformation function that transforms
the task function fj to fi, in particular for each x ∈ X,

fi(x) = Gij(fj(x), x).

Now under the proposed MTL framework, a classification function ft should perform well on its own
task, and at the same time, be close to the other tasks, when they are transformed i.e. functions ft and

1“task relatedness” has been a major concern in MTL, and there has not been much research in this area. Some of the
theoretical work can be found in [1]

2This is a fundamental assumption in MTL that data for all tasks come from the same domain, otherwise it becomes a
different problem, a mixture of MTL and domain adaptation problems.
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Gtu(fu(x), x) should be similar. This intuition suggests the following cost function:

C =
T∑

t=1

( ∑
x∈Xt
y∈Yt

L(ft(x), y)︸ ︷︷ ︸
ft performs well

on training data of t

+ γ ||ft||2H︸ ︷︷ ︸
ft generalizes

well on test data

+
∑
u6=t

λu

∑
x∈X

U(ft(x), Gtu(fu(x), x))︸ ︷︷ ︸
ft is close to

the transformation of fu

+ η ||Gtu||2H︸ ︷︷ ︸
Gtu is simple &
does not overfit

)
(1)

where γ controls the complexity of the task function, and λ trades off the amount of transfer between the
tasks t and u. It is to be noted that term belonging to the loss function L is defined only for the examples
that belong to the task t, while the term belonging to the loss function U is defined over the entire domain X

with no reference to class labels. This allows one to use the unlabeled data in this framework therefore makes
it useful for semi-supervised learning. Also note that we have additionally regularized the cost function by
||Gtu||2H in order to prefer the simple transformation functions. We have used the same reproducing kernel
Hilbert space (RKHS) for classification functions and transformation functions assuming that RKHS is rich
enough to encompass all these functions. Given the cost function (1), proposed MTL framework minimizes
(1) for all task functions f1, . . . fT , and for all transformation functions Gtu i.e. minf1...fT ,Gtu ∀t,u C.

(1) gives us a learning paradigm where all task functions f1, . . . fT and transformation functions Gtu are
learned simultaneously. Optimizing (1) simultaneously for all tasks functions and transformation functions
is hard, therefore we resort to alternate optimization i.e. learning one function at a time keeping all other
functions fixed. This gives us separate cost functions for learning task functions and transformation functions.
Cost function for task t is given as:

Cft =
∑

x∈Xt
y∈Yt

L(ft(x), y) + γ ||ft||2H +
∑
u6=t

λu

∑
x∈X

U(ft(x), Gtu(fu(x), x)) (2)

while cost function for learning the transformation functions can be written as:

CGtu =
∑
x∈X

U(ft(x), Gtu(fu(x), x)) + η ||Gtu||2H . (3)

Solution to both (2) and (3) is given by the representer theorem and is of the form
∑|X|

i=1 αik(·, xi) where
k(·, ·) is the kernel associated with RKHS. Initial experiments on artificial tasks show that we were able to
learn the transformation functions therefore exploit the task relatedness to learn the better models.
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