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Sparse coding is the problem of reconstructing input vectors using a linear combination of basis vectors with
sparse coefficients. Sparse coding has become a popular method for extracting features representations from raw
data. Finding the sparse code for a given input involves minimizing a quadratic reconstruction error with an L1

penalty term. Consequently, a large amount of research has been devoted to efficiently solving this optimization
problem 1–3,6–8. Even so, these algorithms are often too slow for such applications as visual object recognition. Here
we propose two versions of a very fast algorithm that produces approximate estimates of the optimal sparse code.
While our method only produces approximate solutions, it can be used to compute good visual features, and can be
used to initialize exact iterative algorithms. The main idea is to train a non-linear, feed-forward predictor with a
particular architecture and a fixed depth to produce the best possible approximation of the sparse code. A version
of the method, which can be seen as a trainable version of Li and Osher’s coordinate descent method, is shown to
produce approximate solutions with 10 times less computation than Li and Osher’s for the same approximation error.
Unlike previous proposals for sparse code predictors4,5, the system allows a kind of approximate “explaining away” to
take place during inference. The resulting approximator is differentiable and can be included into globally-trainable
recognition systems.

The sparse codes are given by minimizing the following energy with respect to Z:
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||X −WdZ||22 + α||Z||1 (1)

where Wd is an n×m dictionary matrix whose columns are the (normalized) basis vectors, α is a coefficient controlling
the sparsity penalty. The two versions of our algorithm for are derived from two algorithms for obtaining optimal
sparse codes, the (F)ISTA ((Fast) Iterative Shrinkage-Thresholding Algorithm)1,2 and CoD (Coordinate Descent
Algorithm)7. Both algorithms can be thought of in the framework of the Figure 1. In the simpler case of ISTA,
the We = 1

LW t
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DWD are matrices and the nonlinearity is the shrinking function [hθ(V )]i =

sign(Vi)(|Vi|− θi)+. The case of CoD is more complicated; at a given iteration only one code - the most optimal one -
is updated. In this algorithm the following is repeated: Pick a coordinate and minimize (1) keeping other coordinates
fixed. This has exact, explicit solution. The coordinate is picked that would produce the largest change in Z.

The basic idea of this paper is to truncate these two algorithms at a finite number of iterations and instead of
using We, S given in terms of WD (and the α in the shrinkage function given by the sparsity), we learn them, so
that they produce the best approximations of the sparse codes given this architecture. To do this we backpropagate
the gradients and use the stochastic gradient descent algorithm to train the parameters. At the same time we obtain
the gradients with respect to the inputs. This allows these encoders to be included in a globally trained recognition
system. We call these algorithms Learned ISTA (LISTA) and Learned CoD (LCoD).

The LISTA algorithm is a sequence of matrix multiplications and nonlinearities and consequently can be eas-
ily backpropagated through. In the LCoD we are updating one coordinate at a time. Nevertheless one can
backpropagate through it. One only needs to save a small number of variables of the order O((number of itera-
tions)+(dimensionality)), in particular the sequence of coordinates chosen.

We tested the algorithm on the natural image patches. Image patches of size 10× 10 were extracted from Berkeley
database. The mean was removed and the result was rescaled to have standard deviation one. The WD in (1) was
trained by stochastic gradient descent, where the codes were the optimal codes obtained using CoD. We only show
the results for the coordinate descent version here. The result is shown in the Figure 2. We see that LCod gives much
better prediction the CoD for small number of iterations. Similarly, we find that LISTA gives better predictions that
FISTA.
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FIG. 1: (a) block diagram of the ISTA algorithm for sparse coding. The optimal sparse code is the fixed point of Z(k + 1) =
hα(WeX − SZ(k)) where X is the input, hα is a coordinate-wise shrinking function with threshold α, We is the transpose of
the dictionary matrix Wd (whose columns are the basis vectors), and S is W T

d Wd. (b) The proposed approximator “Learned
ISTA”, uses a time-unfolded version of the ISTA block diagram, truncated to a fixed number of iterations (3 here). The matrices
We and S, are learned, so as to minimize the approxmation error to the optimal sparse code on a given dataset. The method
allows us to impose restrictions on S so as to further reduce the computational burden (e.g. keeping many terms at 0, or using
a low-rank factorized form). Another similar trainable encoder architecture based on the Coordinate Descent algorithm is also
proposed.
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FIG. 2: Code prediction errors for CoD and LCoD for varying numbers of iterations. LCoD is about 20 times faster than CoD
for small numbers of iterations. Initializing the matrices with their LCoD values before training (open circles) improve the
performance in the high iteration regime, but seems to degrade it in the low iteration regime (data not shown).
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