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1. Introduction

Historically non-rigid shape recovery and articulated
pose estimation have evolved as separate fields. Recent
methods for non-rigid shape recovery have focused on im-
proving the algorithmic formulation, but have only con-
sidered the case of reconstruction from image correspon-
dences [2, 3, 6]. In contrast, many techniques for pose esti-
mation have followed a discriminative approach, which al-
lows for the use of more general image cues [1, 4, 5]. How-
ever, these techniques typically require large training sets
and suffer from the fact that they assume the output dimen-
sions to be independent given the inputs.

In this paper we combine the findings of the human pose
estimation and non-rigid shape recovery domains and show
that both problems can be solved within the same frame-
work. Our approach addresses some of the issues of dis-
criminative methods by introducing explicit constraints and
forcing the prediction to satisfy them. In particular, we con-
sider the case of distance constraints between neighboring
3D points on a mesh or on a human skeleton (i.e., joints).
This lets us combine discriminative and generative methods
into a common formulation that, for image-based squared
loss functions, simply involves iteratively solving a set of
linear equations.

2. Approach

More formally, letf̂ be the estimate of the possibly non-
linear mappingf : ℜQ → ℜD, such thaty = f(x) + ǫ,
learned by empirical risk minimization. Typically, wheny
is multi-dimensional, its dimensions are assumed to be in-
dependent given the inputs [1, 5]. As a consequence, the
predictionf̂(x∗) for a new inputx∗ might not satisfy the
constraints between the output dimensions.

For our particular case, lety ∈ ℜ3Np be the vector of
3D coordinates of theNp points that define a pose. Let
E be the set ofNe links between 3D points whose length
should remain constant. Finding a pose that satisfies those
constraints can be formulated as solving the problem

minimize
y

L(·,y) + λ||f̂(x∗) − y||22 (1)

subject to ||yk − yj ||
2
2 = l2j,k , ∀(j, k) ∈ E ,

whereL(·,y) is a loss function that depends on the image,

yi is the subvector ofy containing thei-th 3D point, and
l2j,k is the fixed squared distance between pointsj andk.

Since the constraints are non-convex, we propose to iter-
atively linearize them and solve the resulting problem. Let
yt be the estimate of the 3D shape at iterationt. We can
approximate our constraints with their first order Taylor ex-
pansion, and find the displacementδyt that satisfies the lin-
earized constraints by solvingJtδyt = gt, whereJt is the
constraints Jacobian matrix evaluated inyt andgt contains
the constraints errors foryt. Since this system has more
unknowns than equations, it defines the family of poses

s(γt) = yt + J+
t gt + VT

t γt , (2)

whereJ+
t is the pseudo-inverse ofJt, Vt is the matrix

containing the last(3Np − Ne) right singular vectors of
Jt which have zero-valued singular values, andγt is the
(3Np − Ne) dimensional vector of remaining unknowns.

To encourage a stronger dependency on the predictor, we
can rely on theRepresenter theorem. Doing so lets us define
the predictiony = αk∗, whereα is learned from the train-
ing examples, and where we treatk∗ as the new unknowns
of our problem. Sincey is a linear function ofk∗, we can
follow a similar approach as before to encourage the pre-
dicted pose to satisfy constraints. In this case, this yields a
family of poses defined as

s(γt) = α ·
(

k∗,t + J+
t gt + VT

t γt

)

. (3)

Given the new unknownsγt that implicitly minimize the
violation of the constraints, we can re-write Eq. 1 as

minimize
γt

L(·, γt) + λ||f̂(x∗) − s(γt)||
2
2 , (4)

wheres(γt) is given either by Eq. 2 or by Eq. 3. For a
squared loss functionL(·, γt), this is a convex optimization
problem, whose minimum can be obtained in closed-form
by solving a linear system in the least-squares sense.

3. Experimental evaluation

In practice, we used Gaussian processes as our discrim-
inative predictor. Furthermore, the image-based loss func-
tion relied either on an inverse mapping fromy to x, on the
reprojection error of 3D points, or on template matching and
boundary information.
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(a) (b) (c) (d) (e)
Figure 1.Reconstructing a piece of paper from monocular images. Top row: Recovered mesh reprojected on the input image. Bottom
row: Side view of the same mesh. Results were obtained with (a) the original predictor, (b) the constrained predictor, (c) the constrained
predictor with an image likelihood, (d,e) same as (b,c) but when optimizingk∗. Note that the predictor’s result reprojects correctly buthas
noticeably stretched, whereas using the constraints only does not ensure a correct reprojection.
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(a) (b) (c) (d)
Figure 2.Reconstructing a deforming piece of cardboard. (a)-(c) Average MSE as a function of the input noise varianceby optimizing
(a,c)y and (b)k∗. (c) Comparison against [3] and [2]. The inputs are taken as (a)-(c) the image locations of the mesh vertices, and (d)
spatial pyramid of HOG features.
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(a) (b) (c) (d)
Figure 3.Estimating articulated pose (a,b) Human pose from silhouettes [1]. MSE of the original GPand of our method as a function of
the percentage of noise in the silhouette (a), and as a function of the number of training examples (b). (c,d) Hand pose from image features.
(d) Even for a failure of the GP (non-typical), our method recovers the correct pose.

Fig. 1 depicts the results of different approaches when
reconstructing a piece of paper from real monocular images.
The image locations of the mesh vertices were taken as in-
puts, and we minimized the vertices reprojection error.

Fig. 2 depicts results obtained when reconstructing a
piece of cardboard from synthetic data. Fig. 2 (a,b) show the
mean reconstruction error (MSE) as a function of the input
noise variance for 250 training examples. In Fig. 2 (c), we
compare our approach against [3, 2]. The first method re-
lies on the same constraints as ours, but in a frame-to-frame
tracking context. Since our approach does not exploit tem-
poral information, we initialized each frame with the ref-
erence shape. The second approach relies on distance in-
equalities instead of equality constraints. Fig. 2 (d) depicts
the MSE obtained from PHOG features.

In Fig. 3, we show results on articulated pose estimation.
For human pose estimation, Fig. 3 (a,b) depicts the MSE
of the original GP and of our method as a function of the

percentage of noise in the silhouette (a), and as a function
of the number of training examples (b). Fig. 3 (c,d) shows
our results for hand pose estimation. Note that, even when
the GP fails, our method recovers the correct pose.
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