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1. Introduction y; is the subvector off containing thei-th 3D point, and

l? . 1S the fixed squared distance between pojrasdk.

Historically non-rigid shape recovery and articulated Since the constraints are non-convex, we propose to iter-

Fnoes;ﬁo?jsstlg?tr:(;?\ ?ig\i/c;as(:l\;c:)l\éer:caz)s\/;r?/pr?a:\a;;ef;f&ise. d Eneicgnétively linearize them and solve the resulting problem. Let
proving the algorithmic formulation, but have only con- y: be the estimate of th? 3D _shape_at_ teratioriVe can

. . : approximate our constraints with their first order Taylor ex
sidered the case of reconstruction from_ image CorreSpon_'pansion, and find the displacemépt; that satisfies the lin-
den_ces 2,3, 6]. In contrast, many Fechmques for POSe estl-q 4 ized constraints by solvinhdy; = g, whereJ, is the
mation have followed a dlscr|m|n_at|ve approach, which al- constraints Jacobian matrix evaluatedsinandg; contains
lows for the use of more general image cues [1, 4, 5]. How- the constraints errors for,. Since this system has more

ever, these techniques typically require large tra|n|rtg_ S€ unknowns than equations, it defines the family of poses
and suffer from the fact that they assume the output dimen-

sions to be independentgiven thg inputs. s(v) =vi+J g+ Vi, , (2)

In this paper we combine the findings of the human pose
estimation and non-rigid shape recovery domains and showwvhere J; is the pseudo-inverse af;, V, is the matrix
that both problems can be solved within the same frame-containing the last3N,, — N.) right singular vectors of
work. Our approach addresses some of the issues of disd: which have zero-valued singular values, apdis the
criminative methods by introducing explicit constraintsla (3N, — N..) dimensional vector of remaining unknowns.
forcing the prediction to satisfy them. In particular, weeo To encourage a stronger dependency on the predictor, we
sider the case of distance constraints between neighboringan rely on thékepresenter theorem. Doing so lets us define
3D points on a mesh or on a human skeleton (i.e., joints).the predictiony = ak., wherec is learned from the train-
This lets us combine discriminative and generative methodsing examples, and where we trdgt as the new unknowns
into a common formulation that, for image-based squaredof our problem. Since is a linear function ok., we can
loss functions, simply involves iteratively solving a sét o follow a similar approach as before to encourage the pre-
linear equations. dicted pose to satisfy constraints. In this case, this giald

family of poses defined as

2.A h
pproac s(v,) = a- (k*,t +J e + V?’Yt) . 3)

More formally, letf be the estimate of the possibly non-
linear mappingf : R — NP, such thaty = f(x) + ¢,
learned by empirical risk minimization. Typically, when
|ds multl—dlmepsmnal, its dimensions are assumed to be in- minimize £(-,7,) + \|F(x:) = s(v,)|I12 , (4)

ependent given the inputs [1, 5]. As a consequence, the ¢
predictionf(x,) for a new inputx, might not satisfy the
constraints between the output dimensions.

For our particular case, lgt € R2» be the vector of
3D coordinates of theV, points that define a pose. Let
£ be the set ofV, links between 3D points whose length
should remain constant. Finding a pose that satisfies thos
constraints can be formulated as solving the problem

Given the new unknowns, that implicitly minimize the
violation of the constraints, we can re-write Eq. 1 as

wheres(v,) is given either by Eq. 2 or by Eq. 3. For a
squared loss functiod(-, v, ), this is a convex optimization
problem, whose minimum can be obtained in closed-form
by solving a linear system in the least-squares sense.

3. Experimental evaluation

In practice, we used Gaussian processes as our discrim-
inative predictor. Furthermore, the image-based loss-func
subject to ||y — ;|13 =12, . V(j.k) € €, tion relied either on an inverse mapping frgmo x, on the
reprojection error of 3D points, or on template matching and
whereL(-,y) is a loss function that depends on the image, boundary information.

minimize £(-,y) + A||f(x.) — y||3 (1)
y
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Figure 1.Reconstructing a piece of paper from monocular images. Top row: Recovered mesh reprojected on the input image oBott
row: Side view of the same mesh. Results were obtained wjtthéaoriginal predictor, (b) the constrained predicto},tfe constrained
predictor with an image likelihood, (d,e) same as (b,c) buemoptimizingk.. Note that the predictor’s result reprojects correctly Hag
noticeably stretched, whereas using the constraints adg dot ensure a correct reprojection.
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Figure 2.Reconstructing a deforming piece of cardboard. (a)-(c) Average MSE as a function of the input noise varianceptimizing
(a,c)y and (b)k.. (c) Comparison against [3] and [2]. The inputs are takerap$d) the image locations of the mesh vertices, and (d)
spatial pyramid of HOG features.
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Figure 3.Estimating articulated pose (a,b) Human pose from silhouettes [1]. MSE of the original&®® of our method as a function of
the percentage of noise in the silhouette (a), and as a &mofithe number of training examples (b). (c,d) Hand posafiroage features.
(d) Even for a failure of the GP (non-typical), our methodowers the correct pose.

Fig. 1 depicts the results of different approaches when percentage of noise in the silhouette (a), and as a function
reconstructing a piece of paper from real monocularimages.of the number of training examples (b). Fig. 3 (c,d) shows
The image locations of the mesh vertices were taken as in-our results for hand pose estimation. Note that, even when
puts, and we minimized the vertices reprojection error. the GP fails, our method recovers the correct pose.

Fig. 2 depicts results obtained when reconstructing a
piece of cardboard from synthetic data. Fig. 2 (a,b) show theRefer ences
mean reconstruction error (MSE) as a function of the input ) )
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