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INTRODUCTION

We present an algorithm that recovers an unknown cost
function from expert-demonstrated trajectories in continuous
space. We assume that the cost function is a weighted linear
combination of features, and we are able to learn weights that
result in a cost function under which the expert demonstrated
trajectories are optimal. Unlike previous approaches [1],
[2], our algorithm does not require repeated solving of the
forward problem (i.e., finding optimal trajectories under a
candidate cost function). At the core of our approach is the
PI2 (Policy Improvement with Path Integrals) reinforcement
learning algorithm [3], which optimizes a parameterized
policy in continuous space and high dimensions. PI2 boasts
convergence that is an order of magnitude faster than pre-
vious trajectory-based reinforcement learning algorithms on
typical problems. We solve for the unknown cost function
by enforcing the constraint that the expert-demonstrated
trajectory does not change under the PI2 update rule, and
hence is locally optimal.

PI2: POLICY IMPROVEMENT WITH PATH INTEGRALS

We represent all trajectories as Dynamic Movement Primi-
tives (DMPs) [4], which are parameterized policies expressed
by a set of differential equations. The DMP representation
is advantageous as it guarantees attractor properties towards
the goal while remaining linear in its parameters θ, thus
facilitating learning [5].

The PI2 algorithm arises from a solution of the stochas-
tic Hamilton-Jacobi-Bellman (HJB) equation using the
Feynman-Kac theorem, which transforms the stochastic op-
timal control problem into the approximation problem of a
path integral. Detailed derivations are omitted due to lack of
space; we refer the reader to a previous publication [3]. We
consider cost functions of the following form:

Q(τ ) = φtN +
N−1∑
i=0

(qt + uT
tRut)dt (1)

where Q(τ ) is the cost of a trajectory τ , φtN is the terminal
cost, N is the number of time steps, qt is an arbitrary state-
dependent cost function, ut are the control commands at
time t, and R is the positive definite weight matrix of the
quadratic control cost. PI2 updates the parameters of a DMP
with parameters θ, using K trajectories sampled from the
same start state, with stochastic parameters θ + εt at every

time step. The update equations are as follows:

P (τ i,k) =
e−

1
λS(τ i,k)∑K

m=1 e
− 1
λS(τ i,m)

(2)

δθti =
K∑
k=1

P (τ i,k)Mti,kεti,k (3)

S(τ i,k) = φtN ,k +
N−1∑
j=i

qtj ,kdt+ (4)
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N−1∑
j=i+1

(θ + Mtj ,kεtj ,k)
TR(θ + Mtj ,kεtj ,k)dt

Mtj ,k =
R−1gtj ,kg

T
tj ,k

gT
tj ,k

R−1gtj ,k
(5)

where k indexes over the K sampled trajectories used for
the update, i indexes over all time-steps, P (τ i,k) is the
discrete probability of trajectory τ k at time ti, S(τ i,k) is the
cumulative cost of trajectory τ k starting from time ti, δθti is
the update to the DMP parameter vector at time ti, φtN ,k is
the terminal cost incurred by trajectory τ k, qtj ,k is the cost
incurred by trajectory τ k at time tj , εtj ,k is the noise applied
to the parameters of trajectory τ k at time tj , and gtj ,k are
the basis functions of the DMP function approximator for
trajectory τ k at time tj .

INVERSE REINFORCEMENT LEARNING WITH PI2

We assume that the arbitrary state-dependent cost function
qt is linearly parameterized as:

qt = βT
qψt (6)

where ψt are the feature values at time t, and βq are the
weights associated with the features, which we are trying to
learn. Due to the coupling of exploration noise and command
cost in the path integral formalism, we assume that the the
shape of the quadratic control cost matrix R is given, and
we can only learn its scaling factor. We also need to learn
the scaling factor on the terminal cost:

R = βRR̂; φtN = βφtN ψtN (7)

where βR is the control cost scaling factor that needs to be
learned, R̂ is the shape of the control cost, βφtN is the scaling
of the terminal cost, and ψtN is a binary feature which is 1
when the terminal state is reached, and 0 otherwise.
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Fig. 1. (a) A cost function in a 2-D state space, along with a demonstrated low-cost trajectory between two points. The cost function is generated as a
randomly weighted combination of some underlying features. (b) The cost function learnt from the single demonstrated trajectory.

We can rewrite Eqn. 4, the cumulative cost, as follows:

S(τ i,k) = βT

 ∑N−1
j=i ψtj ,k

1
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PN−1
j=i+1(θ + Mtj ,kεtj ,k)TR̂(θ + Mtj ,kεtj ,k)

ψtN ,k


= βTΦ (8)

where β = [βq βR βφtN ]T is the weight vector to be
learned, and Φ are sufficient statistics that can be computed
for every time-step for each sample trajectory.

The expert-demonstrated trajectory can be considered lo-
cally optimal under a particular cost function if the updates
to its parameters using the PI2 update rule are 0. In order
to achieve the inverse, i.e., solve for the cost function under
which the expert-demonstrated trajectory is locally optimum,
we minimize the squared magnitude of trajectory updates,
with an additional regularization term on the weight vector:

minβ
N−1∑
i=0

w2
i (δθti)

T(δθti) + γβTβ (9)

wi =
N − i∑N−1

i=0 (N − i)
(10)

where γ is a scalar regularization factor. The weights wi
assign a weight to the update for each time step, equal to the
number of time steps left in the trajectory. This gives early
points in the trajectory a higher weight, which is useful since
their parameters affect a larger time horizon. Other weighting
schemes could be used, but this one was experimentally
found to give good learning results [3].

The solution of this optimization problem yields a weight
vector β, which produces the cost function we seek. We
optimize this objective function using the Matlab non-linear
least squares solver, and are currently investigating alternate,
more efficient ways of performing this optimization.

EVALUATION

We generated 5 random features in a 2-D state space, each
feature being a sum of many Gaussians with random centers
and variances. A random weighting of these features results
in a cost function, shown in Fig. 1(a). A low-cost trajectory
between two points is then demonstrated in this state space,
also seen in Fig. 1(a). We then sampled 50 trajectories
around this expert-demonstrated trajectory, and solved the
optimization problem in Eqn. 9 to obtain the weights β,
and the resulting cost function as seen in Fig. 1(b). There
is an excellent match between the true cost function and the
learned one, demonstrating the effectiveness of our approach.

These results are to be considered preliminary. Efficient
algorithms for optimizing Eqn. 9, systematic evaluations
of learning performance, comparisons with other inverse
reinforcement learning algorithms, and applications to real-
world problems are left for future work.
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