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Although significant progress has been made in learnin TABLE
g g p g gPSEUDOCODE OF THEPI2 ALGORITHM FOR A 1D PARAMETERIZED

control from trajectory roll-outs, performing Reinforcement
. . . . . . . PoLicy (NOTE THAT THE DISCRETE TIME STERIt WAS ABSORBED AS A
Learning in high dimensional and continuous state action
. . . . CONSTANT MULTIPLIER IN THE COST TERM$.
spaces remains a challenging problem. Especially in the
domain of humanoid robot control, the high dimensionality,
the lack of accurate dynamical models, and the hybrid and, Given:

unstable nature of the underlying dynamics due to contact — An immediate cost functiom; = ¢: + 67 RO
with the environment make the application of traditional - ﬁt?fmr']”a't_COSt temﬁt’tw_ 4 boli T(0 4 )
. . } — A stochastic parameterized poliey = g/ (60 + e
model based and model free Reinforcement Learning meth — The basis functiorg,, from the system dynamics
ods rather difficult. — The varianceZ. of the mean-zero noise;
In this short paper we present a new probabilistic method ~ — The initial parameter vectad

[1] for reinforcement learning that is derived based from the * Repeatuntil convergence of the trajectory coBt

. : At — step 1:Create K roll-outs of the system from the same start
Bellman principle forcontinuous state-action spacdsnder statexg using stochastic parametes ¢, at every time step

the constraint of nonlinear stochastic dynamics, the result — step 2: Forall K roll-outs, compute:
of the Bellman principle is the stochastic Hamilton Jacobi . _Rg el
Bellman (HJB) equation, which is a nonlinear and second * step 2LMy g = T
order Partial Differential Equation (PDE). Exponentiation of * step 2.2: Compute the cost for each sampled  trajectory:
the value function and the use of mild assumptions on the i/i"”‘*’“) :Ti;Nék K/IZJ':Z‘ Gyt 3 2 5= (6 +
exploration noise and control cost transforms the nonlinear ty ket k) RO ”fftg(’f_) O
PDE into a linear and second order PDE. The resulting * step 2.3:P (7i,) :m
PDE is the so called Backward Chapman Kolmogorov PDE. — step 3: Forall i time Steps’f?ompute;
The use of the first of the nonlinear Feynman Kac Lemmas x step 3.1:00;, = S0, [P (Ti) My, & €]
provides a bridge between Forward Stochastic Differential ' o SN N—i) wpt sep
Equations (FSDEs) and Partial Differential Equations (PDEs) ~ ~ SteP #:Computedd™ = ==y
[2] of the type of a Backward Chapman Kolmogorov PDE. — step 5:Update < 6 + 66 .
. — step 6:Create one noiseless roll-out to check the trajectory cost
The FSDEs are used for sampling parts of the state space R=dup + 5N olr,

which are relevant to the task goal. Moreover sampling is
performed in an iterative fashion to localize exploration and
avoid the curse of dimensionality. The resulting algorithm,
called Policy Improvement withPath Integrals PI°), takes f(x;) € ®"*! the passive dynamic#, € RP*! the control
on a surprisingly simple form, has no algorithmic open tunvector ande; € R?*! Gaussian noise with variance,.
ing parameters besides the exploration noise, and perforis immediate reward we considey = r(x;,0;,t) = q; +
numerically robustly in high dimensional learning problems@; R8; wheregq, = ¢(x;,t) is an arbitrary state-dependent
It also makes an interesting connection to previous work orgward function, and® the positive definite weight matrix
RL based on probability matching [3], [4], [5] and explainsof the quadratic control cost.
why probability matching algorithms can be successful. The PI? algorithm is given in I. In step (2.3), the term
) ) P (7;1) is the discrete probability at timg of each tra-
Policy Improvement with Path Integrals jectory roll-out that is computed with the help of the cost
Let us define a finite-horizon reward function for a tra-S(r; ;) step (2.2). For every time step of the trajectory, a
jectory T; starting at timet; in statex;, and ending at parameter updatéd,, is computed in step (3.1) based on a
time ty as R(1;) = ¢iy + ff” ry dt with ¢¢,, = ¢(z,)  probability weighted average cost over the sampled trajecto-
denoting a terminal reward at timgy and r; denoting ries. The parameter updates at every time step are finally
the immediate reward at time The goal is to find the averaged in step (4) and the parameter upcﬂa{féw) =
controls@, that minimize the cost functio (x;,) = V; = 0¥ 4+ §6 takes place in step (5).
min@t':w Er, [R(7;)] where the expectatio’[.] is taken Eyaluations
over all trajectories starting at,,. We consider the rather ~We have evaluate®I? in three different tasks and exper-
general control systemt = f(x;,t) + G(x:) (8: +¢) = imental platforms. In the first evaluation in Figure 1 we are
f, + G (0, +¢;) with x, € R®"*! denoting the state of comparingPI? against Policy Gradient Methods in the task
the systemG; = G(x;) € R"*? the control matrix,f; = of reaching a goal state by passing via a intermediate target
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(a) Real & Simulated Robot Dog
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Fig. 2. Reinforcement learning of optimizing to jump over a gap

with a robot dog. The improvement in cost corresponds to about 15 cm
improvement in jump distance, which changed the robot’s behavior from an
initial barely successful jump to a jump that completely traversed the gap
with entire body. This learned behavior allowed the robot to traverse a gap
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Fig. 1. Comparison of learning multi-DOF movements (2,10, and 50 DOFs)
with planar robot arms passing through a via-pdihta,c,e) illustrate the
learning curves for different RL algorithms, while b,d,f) illustrate the end-
effector movement after learning for all algorithn®I? performs an order

of magnitude better than other methods.

G for a planar robot manipulator of 2,10 and 50 DOF. In the
second evaluation in Figure 2 , the Little Dog robot learns the
task of how to jump over a large gap.In the third evaluation

we use a Phantom robot (Figure 3) and we are appl#fy

not only for learning optimal state trajectories but also for o R e
learning the optimal gain schedule. The task for the phantomn\"-amﬁ -

robot is to reach a goal state by accurately passing vid*
an intermediate target, while maximizing compliance durinéj‘j

control. The resulting behavior is illustrated in Figure 4.
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Fig. 3. lllustration of the three DOF kinematics of the Phantom robot.
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Fig. 4. The plots in the first row illustrate the joint movements of the robot.
Inn the second row the time varying gains schedule is illustrated. The dashed
line is the initial trajectory and the blue line corresponds to the trajectory
after learning. At the intermediate target states the gains increase so that the
task of passing through the intermediate goal can be accomplished, while

the gains are kept low otherwise.



