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Although significant progress has been made in learning
control from trajectory roll-outs, performing Reinforcement
Learning in high dimensional and continuous state action
spaces remains a challenging problem. Especially in the
domain of humanoid robot control, the high dimensionality,
the lack of accurate dynamical models, and the hybrid and
unstable nature of the underlying dynamics due to contact
with the environment make the application of traditional
model based and model free Reinforcement Learning meth-
ods rather difficult.

In this short paper we present a new probabilistic method
[1] for reinforcement learning that is derived based from the
Bellman principle forcontinuous state-action spaces. Under
the constraint of nonlinear stochastic dynamics, the result
of the Bellman principle is the stochastic Hamilton Jacobi
Bellman (HJB) equation, which is a nonlinear and second
order Partial Differential Equation (PDE). Exponentiation of
the value function and the use of mild assumptions on the
exploration noise and control cost transforms the nonlinear
PDE into a linear and second order PDE. The resulting
PDE is the so called Backward Chapman Kolmogorov PDE.
The use of the first of the nonlinear Feynman Kac Lemmas
provides a bridge between Forward Stochastic Differential
Equations (FSDEs) and Partial Differential Equations (PDEs)
[2] of the type of a Backward Chapman Kolmogorov PDE.
The FSDEs are used for sampling parts of the state space
which are relevant to the task goal. Moreover sampling is
performed in an iterative fashion to localize exploration and
avoid the curse of dimensionality. The resulting algorithm,
calledPolicy Improvement withPath Integrals (PI2), takes
on a surprisingly simple form, has no algorithmic open tun-
ing parameters besides the exploration noise, and performs
numerically robustly in high dimensional learning problems.
It also makes an interesting connection to previous work on
RL based on probability matching [3], [4], [5] and explains
why probability matching algorithms can be successful.

Policy Improvement with Path Integrals

Let us define a finite-horizon reward function for a tra-
jectory τ i starting at timeti in state xti

and ending at
time tN as R(τ i) = φtN

+
∫ tN

ti
rt dt with φtN

= φ(xtN
)

denoting a terminal reward at timetN and rt denoting
the immediate reward at timet. The goal is to find the
controlsθt that minimize the cost functionV (xti

) = Vt =
minθti:tN

Eτ i [R(τ i)] where the expectationE[.] is taken
over all trajectories starting atxti

. We consider the rather
general control systeṁx = f(xt, t) + G(xt) (θt + εt) =
ft + Gt (θt + εt) with xt ∈ <n×1 denoting the state of
the system,Gt = G(xt) ∈ <n×p the control matrix,ft =

TABLE I

PSEUDOCODE OF THEPI2 ALGORITHM FOR A 1D PARAMETERIZED

POLICY (NOTE THAT THE DISCRETE TIME STEPdt WAS ABSORBED AS A

CONSTANT MULTIPLIER IN THE COST TERMS).

• Given:
– An immediate cost functionrt = qt + θT

t Rθt

– A terminal cost termφtN

– A stochastic parameterized policyat = gT
t (θ + εt)

– The basis functiongti from the system dynamics
– The varianceΣε of the mean-zero noiseεt

– The initial parameter vectorθ
• Repeatuntil convergence of the trajectory costR:

– step 1: CreateK roll-outs of the system from the same start
statex0 using stochastic parametersθ + εt at every time step

– step 2: For all K roll-outs, compute:

∗ step 2.1:Mtj ,k =
R−1gtj ,k gT

tj,k

gT
tj,k

R−1gtj ,k

∗ step 2.2: Compute the cost for each sampled trajectory:
S(τ i,k) = φtN ,k +

PN−1
j=i qtj ,k+ 1

2

PN−1
j=i+1(θ +

Mtj ,kεtj ,k)T R(θ + Mtj ,kεtj ,k)

∗ step 2.3:P
`
τ i,k

´
= e

− 1
λ

S(τ i,k)PK
k=1[e

− 1
λ

S(τ i,k)
]

– step 3: For all i time steps, compute:

∗ step 3.1:δθti =
PK

k=1

ˆ
P

`
τ i,k

´
Mti,k εti,k

˜
– step 4:Computeδθm =

PN−1
i=0 (N−i) wm

ti
δθm

tiPN−1
i=0 (N−i) wm

ti
– step 5:Updateθ ← θ + δθ
– step 6:Create one noiseless roll-out to check the trajectory cost

R = φtN +
PN−1

i=0 rti

f(xt) ∈ <n×1 the passive dynamics,θt ∈ <p×1 the control
vector andεt ∈ <p×1 Gaussian noise with varianceΣε.
As immediate reward we considerrt = r(xt,θt, t) = qt +
θT

t Rθt whereqt = q(xt, t) is an arbitrary state-dependent
reward function, andR the positive definite weight matrix
of the quadratic control cost.

The PI2 algorithm is given in I. In step (2.3), the term
P (τ i,k) is the discrete probability at timeti of each tra-
jectory roll-out that is computed with the help of the cost
S(τ i,k) step (2.2). For every time step of the trajectory, a
parameter updateδθti

is computed in step (3.1) based on a
probability weighted average cost over the sampled trajecto-
ries. The parameter updates at every time step are finally
averaged in step (4) and the parameter updateθ(new) =
θ(old) + δθ takes place in step (5).

Evaluations
We have evaluatedPI2 in three different tasks and exper-

imental platforms. In the first evaluation in Figure 1 we are
comparingPI2 against Policy Gradient Methods in the task
of reaching a goal state by passing via a intermediate target
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Fig. 1. Comparison of learning multi-DOF movements (2,10, and 50 DOFs)
with planar robot arms passing through a via-pointG. a,c,e) illustrate the
learning curves for different RL algorithms, while b,d,f) illustrate the end-
effector movement after learning for all algorithms.PI2 performs an order
of magnitude better than other methods.

G for a planar robot manipulator of 2,10 and 50 DOF. In the
second evaluation in Figure 2 , the Little Dog robot learns the
task of how to jump over a large gap.In the third evaluation
we use a Phantom robot (Figure 3) and we are applyingPI2

not only for learning optimal state trajectories but also for
learning the optimal gain schedule. The task for the phantom
robot is to reach a goal state by accurately passing via
an intermediate target, while maximizing compliance during
control. The resulting behavior is illustrated in Figure 4.
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Fig. 2. Reinforcement learning of optimizing to jump over a gap
with a robot dog. The improvement in cost corresponds to about 15 cm
improvement in jump distance, which changed the robot’s behavior from an
initial barely successful jump to a jump that completely traversed the gap
with entire body. This learned behavior allowed the robot to traverse a gap
at much higher speed in a competition on learning locomotion.

Fig. 3. Illustration of the three DOF kinematics of the Phantom robot.

Fig. 4. The plots in the first row illustrate the joint movements of the robot.
In the second row the time varying gains schedule is illustrated. The dashed
line is the initial trajectory and the blue line corresponds to the trajectory
after learning. At the intermediate target states the gains increase so that the
task of passing through the intermediate goal can be accomplished, while
the gains are kept low otherwise.


